
THE UPGRADE OF THE ANKA CONTROL SYSTEM TO ACS
(ADVANCED CONTROL SYSTEM)

I. Kriznar, G. Pajor, M. Plesko, M. Sekoranja, G. Tkacik, D. Vitas (JSI and Cosylab),
K. Cerff, W. Mexner (ANKA-ISS)

Abstract

The entire CORBA communication layer at the syn-
chrotron light source ANKA was efficiently upgraded to
the next generation device servers, based on Advanced
Control System (ACS). The old system, which was running
since 2000, required an upgrade to a new version of com-
mercial CORBA libraries. Instead of purchasing a costly li-
cense, a decision was made to upgrade to open source TAO
CORBA and ACS. The design of ACS is the next step in the
evolution of the idea, which lays behind the old ANKA CS,
a vision of a control system with distributed CORBA ob-
jects for remotely controllable physical devices. The ACS,
developed in cooperation with ESO, extended the old de-
vice servers with improved management and debugging ca-
pabilities and greatly improved the long time stability of
servers on Windows NT machines. Adjustment to the new
server interface was smooth and without major changes at
the fieldbus and client side of the CS. This was possible due
to modular object-oriented architecture at all control sys-
tem layers and good design of interfaces for devices. The
code of complex Java clients stayed practically the same,
we only had to change the communication plug of Abeans,
our core Java libraries. This has significantly reduced the
upgrade time because all end-user Java applications re-
mained visually and functionally unchanged. This is also
of great value to the operators because no additional train-
ing was required. Interfaces to LonWorks device drivers,
which are based on functionality of devices, also remained
unchanged. In a system with a large number of various de-
vices we were able to keep the whole LonWorks fieldbus
intact, we even used the same configuration database with
the same set of installed drivers. The smoothness of the
upgrade confirms that our developments were focused into
the right direction. Now even those users are 100% satis-
fied with the control system, who always had something to
complain about.

INTRODUCTION

Control system for ANKA accelerator storage ring was
designed and produced by KGB (Kontroll Gruppe fur
Beschleuniger) group at Josef Stefan Institute in Ljubljana,
Slovenia. Essentially the same group of people also suc-
cessfully upgraded part of the control system to ACS in
2002.

ANKA is a 2.5 GeV synchrotron radiation light source
located in Karlsruhe, Germany. It contains about 500 phys-
ical devices (power supplies, vacuum pumps, beam posi-

tion monitors, RF generators, etc.) that are managed by the
control system. The device I/O is handled by self-sufficient
microcontroller boards, which connect to a standard Lon-
Works field bus network. Each branch of the network is
attached to a PC with simple device servers running on
it. The DeviceServers map the devices and their proper-
ties onto approximately 2000 objects and make them re-
motely available using CORBA (ACS - Advanced Control
System). On the client side, Abeans completely wrap the
CORBA client-side objects. Abeans provide a rich appli-
cation framework which allows even non-experts to easily
build powerful applications.

The main development objective of the control system
for ANKA was to make it user(operator)-friendly and easy
to maintain. ANKA was built with minimal cost; we had to
minimize in-house development and maximize the use of
commercial-quality products. Owing to the fact that many
commercial components exist, great care has been taken in
using them as often as possible, while keeping the num-
ber of different products small. Table 1 gives an overview
of products used. Note that only those components have
been developed in-house, for which no commercial alter-
native existed. This category includes components, which
are specific to accelerators, such as API, data server and the
I/O boards.

Table 1: Products used in the control system
Usage Product Source
consoles PCs Many
operating system Windows NT Microsoft
panels Java Sun
accelerator API Abeans Cosylab
process computer PCs many
operating system Windows NT Microsoft
Internet communication ACS ESO &

Cosylab
fieldbus management LCA/LNS Echelon
archive database SQL many
config. database text-files Cosylab
data server ACS server Cosylab
fieldbus LonWorks Echelon
microcontroller Neuron Echelon
programming language Neuron C Echelon
cross-developing tool LonBuilder Echelon
I/O boards Zeus, Hera,

Ariadne
Cosylab

Proceedings of ICALEPCS2003, Gyeongju, Korea

457



OBJECT ORIENTED DESIGN WITH
DEVICE/PROPERTY ARCHITECTURE

ANKA control system design is based on object-oriented
(OO) technologies from its lowest layer up to the client
software. The essence of this design lies in the descrip-
tion of physical devices in OO terms, for which Basic Con-
trol Interface (BACI) was used (the very first design was
called Accelerator CORBA Interface (ACI) [1]). In accor-
dance to CORBA specification, device descriptions were
phrased in terms of Interface Definition Language (IDL),
which presents a programming language-independent way
of defining object interfaces. The BACI has been meant to
be a standardized interface so that applications and pieces
of control systems can be hooked to it from either side.
The intent of BACI IDL definitions was to create standard-
ized, functionally-oriented interfaces to which clients and
servers hook from each side. In addition, we were hop-
ing for wider acceptance of these definitions in the control
system community, because they are independent of the un-
derlying HW details of the control system.

A device is a CORBA object that corresponds to a physi-
cal device, e.g. power supply, vacuum pump, current mon-
itor, etc. The device is the basic entity of the BACI, be-
cause it is the most natural concept for modelling physical
entities in an accelerator. Actions that are executed on a
device, like on, off or reset correspond to methods of the
device. Each device has a number of device properties that
are controlled, e.g. electric current, status, position, etc.

Device properties, which are also defined as objects in
the BACI, are referenced by the devices that contain them
as IDL attributes. Properties are distinguished by type (pat-
tern = unsigned integer, double, etc.) and by being read-
only (RO) or read-write (RW) objects. Each such prop-
erty object has specific characteristics, e.g. the value, the
minimum, its description, units, etc. The methods of the
property interface allow the user to retrieve the character-
istics and optionally (in case of RW properties) also set the
value: get(), set(), minVal(), etc.

A well known example of a definition of device is IDL
for a simple power supply:

interface PowerSupply : Device {
// properties
readonly attribute RWdouble current;
readonly attribute ROdouble readback;
readonly attribute ROpattern status;
// commands
void on(CBvoid);
void off(CBvoid);
void reset(CBvoid);

}

DEVICE SERVERS

Device servers were precursors to ACS servers. A De-
viceServer is a CORBA sever written in C++ that imple-
ments one specific device IDL interface and exports de-

vices with this type to the network. Device servers were
running on Windows NT computers with LonWorks field-
bus interface card in each.

In ANKA, we control about 500 distinct physical devices
through 29 (initially 26) different IDL device types. They
were exported by 35 (41 at the moment) device servers on 9
Windows NT machines with one LonWorks fieldbus inter-
face card per machine. Device servers were using a well-
known CORBA implementation of a major vendor. After
a number of problems with CORBA stability and purchase
of license for libraries, the decision was finally taken to
upgrade device servers to a different CORBA implementa-
tion. At that time, a stable release of ACS, built on TAO
open source CORBA implementation, was already avail-
able. With an upgrade to ACS, we were able to move to
new CORBA and whole new control system, which was
created with experience accumulated at similar projects in
the astronomical and particle accelerator communities. In
addition, ACS is a professional-grade control system with
far better support and documentation base than the original
device servers.

ACS

ACS is a CORBA-based control system framework with
all features expected of a modern control system ([4] and
[5]). ACS provides a powerful XML-based configuration
database, synchronous and asynchronous communication,
configurable monitors and alarms that automatically re-
connect after a server crash, run-time name/location res-
olution, archiving, error system and logging system. Fur-
thermore, ACS has built-in management, which enables a
centralized control over processes with commands such as
start/stop/reload, send message, disconnect client, etc. and
is fine-grained to the level of single devices. ACS comes
with all necessary generic GUI applications and tools for
management, display of logs and alarms and a generic ob-
ject explorer, which discovers all CORBA objects, their
attributes and commands at run-time and allows the user
to invoke any command. ACS employs several standard
CORBA services such as notification service, naming ser-
vice, interface repository and implementation repository.
It hides all details of the underlying mechanisms, which
use many complex features of CORBA, queuing, asyn-
chronous communication, thread pooling, life-cycle man-
agement, etc. Written in C++ and using the free ORB TAO,
which is based on the operating system abstraction plat-
form ACE, ACS has been ported to Windows, Linux, So-
laris and VxWorks. ANKA port of ACS runs on Windows
NT and Windows 2000.

ACS at ANKA

By drawing on our experience with old device server
deployment, we utilized ACS framework to create a new
ANKA CS installation very similar to the old one. New
ACS based control system shares the same Device/Property

Proceedings of ICALEPCS2003, Gyeongju, Korea

458



Figure 1: ACS deployment diagram.

data model (called Component/Property at ACS) as de-
scribed by BACI Basic Control Interface (BACI). BACI
IDL interfaces in ACS are generalization of the initial
BACI (or ACI) definitions from ANKA control system.
BACI defines a set of base classes and interfaces, which
prescribe how Component (Device at ANKA) and Property
implementators provide data flow from remote distributed
objects. In effect, BACI itself does not define any specific
control system, but is a formal design pattern specification
of how its basic interfaces are to be combined to create a set
of Device/Property IDLs. When BACI was incorporated
into ACS, surprisingly very little of basic BACI definitions
were changed. This proved how solid and well thought was
OO design of ANKA control system.

Transition to ACS was performed very smoothly. It
took one man-month of work to customize ACS servers
for ANKA (replacing the functionality of DeviceServers)
and two man-weeks of work squeezed in one week visit at
ANKA for on-site debugging in order to deploy a stable
ACS installation. Much of this success is owed to the fact
that only one device server layer of existing control system
was changed.

The following control system components were replaced
or changed during transition to ACS:

DeviceServers replaced with ACS containers (Activa-
tors) and distributed objects (DOs)

Abeans minor changes in Plug due to BACI up-
date

StaticDB minor changes in configurational
database, added additional ACS man-
agement related entries

THe following control system components remained
intact during transition to ACS:

high-level Java
client software

machine operators was able to oper-
ate the machine with a familiar ap-
plication

LonWorks
device drivers

key to smooth transition, a lot of
work was saved by keeping already
integrated devices in the control sys-
tem as they are

FUTURE PLANS

The development of Abeans/ACS control system at
ANAK currently proceeds in two directions. An idea
emerged, add the ACS interface to beamline devices.
Firstly, we are preparing an idea of how to model beam-
line devices with BACI and deploy them on ACS plat-
form. Beamlines would benefit from ACS services and
Java clients. Even greater benefit would be the possibil-
ity to write storage ring or beamline Java clients that would
make automatic optimization based on data from both parts
of the machine.

Secondly, the total number of computers will be reduced
at least by half by putting three LonWorks fieldbus inter-
face cards onto a new single computer. The nine PII server
PCs will be replaced by three new Pentium IV PCs and one
LonWorks ISA card per PC with three PCI standard cards.
This will reduce the maintenance effort for the server side
of the ANKA control system.

CONCLUSION

Device servers at ANKA were smoothly replaced with
ACS activators in very short time. Transition with min-
imal effort was possible due to the fact, that only sin-
gle layer of existing ANKA control system was totally
replaced. Besides this ACS was designed on experience
with old device servers deployment, so both share the same
data model. Even though, the ACS was a generalization
of initial ANKA control system design, the old set of IDL
interfaces which prescribe remote distributed objects was
changed surprisingly little. This proved how solid and well
thought was the initial object-oriented design of ANKA
control system.

REFERENCES

[1] M. Plesko, “The CORBA IDL Interface for Accelerator Con-
trol”, EPAC’98, Stokholm, June 1998

[2] M. Plesko et al, “A Control System Based on Web, Java,
CORBA and Fieldbus Technologies”, PCaPAC’99, Tsukuba,
January 1999

[3] I. Verstovsek, M. Plesko et al, “ANKA Control System Takes
Control”, PCaPAC’00, Hamburg, October 2000

[4] M.Plesko et al, “ACS the Advanced Control System”, PCa-
PAC’02, Frascati, October 2002

[5] http://www.eso.org/ gchiozzi/AlmaAcs/

[6] http://www.cosylab.com/

Proceedings of ICALEPCS2003, Gyeongju, Korea

459


