
CERN FRONT-END SOFTWARE ARCHITECTURE
FOR ACCELERATOR CONTROLS

A. Guerrero, J-J Gras, J-L Nougaret, M. Ludwig, M. Arruat, S. Jackson,
CERN, Geneva, Switzerland

Abstract
To overcome the current diversity in AB [1] front end

equipment software and pave the way towards LHC [2]
for efficient development, diagnostic and maintenance in
this area, the CERN Accelerator Controls group launched
in April 2003 a project to develop the new CERN [3]
accelerator standard infrastructure for front end software.
This development is based on the infrastructure recently
born to handle the SPS beam measurement systems and
extends it to handle the PS and SPS multi-cycling
schemes, the future requirements needed for LHC as well
as providing a good backward compatibility with the
existing infrastructures. The project, approach and first
deliverables are presented.

INTRODUCTION
The Front-End Software Architecture framework,

known as FESA [4], is a complete environment for the
equipment specialists to design, develop, test and deploy
real-time control software for front-end computers. This
framework will be used from now on to develop the LHC
rings and injection chain front end equipment software.

Based on the BISCoTO [5] tools and functionality, the
primary objective of this framework is to standardize,
simplify and optimize the task of writing front end
software. It encompasses the following:

- A generic model that captures the recurrent aspects
of real-time software programming in the domain of
accelerator control.

- A method whereby equipment–specialists reuse /
apply the generic architecture and tailor it to their
specific needs on a case-by-case basis.

- A set of software tools to support equipment-
specialists, users and the exploitation team at all
stages of the development and during operation.

ARCHITECTURE MODEL
In order to ensure good productivity and

maintainability of the code, a clear separation between the
generic and the equipment specific code has been
enforced, as illustrated by Figure 1. This class diagram
shows:

- The generic layer consisting of a set of inter-
dependant base classes (represented as fine-
contoured rectangles). Together, these classes form
the backbone of reusable front-end software.

- The set of application-specific concrete classes
(represented at the bottom of the diagram with bold
contours) are derived by the equipment-specialist
from the framework base classes.

ConcreteRtActionConcreteDeviceConcreteServerAction

FesaEventSourceFesaEventSource
FesaActionFesaAction

ConcreteRtActionConcreteDevice

FesaRtActionFesaRtAction

0..1 listens to

triggering

0..*orchestratesFesaScheduler

consuming

0..1 listens to

triggering

0..*orchestratesFesaSchedulerFesaScheduler

consumingproducing
FesaEvent

producing
FesaEvent

FesaSharedMemoryFesaSharedMemoryFesaSharedMemory

FesaDevice
0..n

0..n
1

FesaDeviceFesaDevice
0..n

0..n
1

FesaServerActionFesaServerActionFesaServerAction

ConcreteServerActionConcreteServerAction

FesaMtgEventSource

FesaRequestEventSource

FesaMtgEvent

FesaRequestEvent

FesaMtgEventSourceFesaMtgEventSourceFesaMtgEventSourceFesaMtgEventSourceFesaMtgEventSource

FesaRequestEventSourceFesaRequestEventSourceFesaRequestEventSource

FesaMtgEventFesaMtgEventFesaMtgEvent

FesaRequestEventFesaRequestEvent

FesaCompositeEventSourceFesaCompositeEventSourceFesaCompositeEventSource

F

Proceedings of ICALEPCS2003, Gyeongju, Korea
igure 1: Class diagram representing the static view of the FESA framework - Only classes filled with a dashed-pattern
actually require custom-coding from the front-end software developer
342

Automatic code generation forms a significant part of
the concrete class layer. The ConcreteDevice class, which
represents the software abstraction of the equipment, has
its interface (i.e. list of properties) fully described in the
configuration database. The information is then used by
the framework to automatically generate corresponding
C/C++ code (the front end ConcreteDevice class) as well
as Java code (for the generic graphical test application).

As a result, the ratio between the generic/generated
code and the developer specific code in the front end
usually equates to around 10 to 1 with most of the added
code being limited to equipment specific actions.

Structure
As shown in Figure 1, the framework’s base layer is

composed of the following classes:
- At the heart of real-time activity, the

FesaEventSource acts as a pacemaker by firing
FesaEvent instances. A FesaEvent wraps hardware
interrupts, machine events or client requests as
objects. The FesaCompositeEventSource class acts
as an event-source concentrator by providing a
common channel through which different kinds of
events, fired by different event sources running in
their own threads, may flow in. This plug-in event
source approach allowed us to incorporate different
machine timing libraries as well as the middleware
of the PS and SPS machines whilst hiding these
differences from the equipment software developer.
This approach also allows event source simulation.

- The FesaAction is the basic work-unit carried-out by
the equipment software, and is where the equipment
specific functionality is coded. The FesaAction class
is sub-classed by the FesaRtAction and
FesaServerAction classes which handle hardware
access and client requests respectively. A
FesaRtAction typically executes code that deals with
the hardware, is triggered by an interrupt, and is
subject to tight timing constraints. A
FesaServerAction typically fulfils a request from an
operator in the control room and runs at a lower
priority. For each of these actions, the developer
supplies an execute() method in which he/she
has direct access to the targeted device (via the
ConcreteDevice:device-
>getPropertyName() method).

- The FesaDevice class is a data-holder that reflects
the state of an underlying hardware device.
FesaDevice attributes fall into several categories
including but not restricted to the following: settings,
acquisitions and state-variables.

- The FesaScheduler singleton object listens to the
event source and following an event, it triggers an
appropriate action according to predefined logic
(usually a simple associative map which defines a
sequence of elementary actions to be executed for
each type of event. See Table 1).

Behaviour
The scenario diagram of Figure 2 depicts the typical

behaviour of an RT-task observed after customizing the
FESA framework for a specific device and set of actions.

Firstly, the RT-task subscribes to events fired by the
central timing process (or any other HW sources). This
process orchestrates the accelerator’s pulsed-mode of
operation, and the RT-task block-waits on event
reception. Whenever an event occurs, the framework
examines its type and triggers the appropriate action as
specified in the equipment configuration (Fig 2).

anEventSource theScheduler anAction

anEvent

fesaWaitEvent()

apply scheduling algorithm

produces

execute(event *)

consume

access context (optional)

aDevice

access

access

for ever

device loop

Figure 2: Sequence diagram of real-time handling

In the sequence diagram, activities represented by
rectangles filled with a dashed pattern, are those that
differ from one RT-task to another and that the
programmer does code. This diagram illustrates two key
points:

- The specific (i.e. custom) part of an RT-task
essentially lies in the body of the elementary actions
that the RT-task triggers.

- The scheduling algorithm whereby the dispatcher
triggers appropriate actions in response to incoming
events is provided by the FESA framework.
Furthermore, the scheduling algorithm is fully
configurable by the equipment specialist. The
equipment specialist merely fills in a table that links
the triggering of a particular action to the occurrence
of a particular event for a predefined subset of
devices (see Table 1). This table is retrieved at the
initialization of the front-end software, which then
updates the associative map it relies on for
scheduling.

Proceedings of ICALEPCS2003, Gyeongju, Korea

343

Table 1: Configuration of the event-action map that
defines the triggering of real time actions upon event
occurrences. A machine Beam In event will launch the
Acquire action on every device of device type ‘Proto’

Source
name

Event name Action
name

Action Arg Device
Selector

- Init Init All devices

MTG Warning
Beam In

Prepare All devices

MTG Beam In Acquire DeviceType
= Proto

UserCmd Emergency Stop Emergency All devices

UserCmd Stop Stop Normal All devices

WORKFLOW & SOFTWARE TOOLS
In order to develop equipment software within FESA

the framework must be customised to suit the equipment
specific needs. To assist in this process, a set of tools is
provided to support the equipment specialist at all phases
of development.

The design phase
Firstly, the developer must describe his/her new

equipment interface, internal structures and real time
behaviour. The FESA configuration tool allows both the
configuration of internal structures as well as the
population of the underlying data. As the front-end uses
code generated by this tool, it knows where to find and
load the data on each reboot.

The coding phase
Based on the equipment description, the configuration

tool also generates the related C/C++ code which handles
both the shared memory population and the external client
access. Java code is also generated and is used for client
access via the generic graphical tool, the Navigator,
which allows a developer to drill-down to any property
defined in the equipment.

The configuration tool also deploys code which the
developer will have to modify, and in which he/she will
have to implement the equipment specific functionality,
i.e. the declared RT and Server actions. Even without any
developer input, the equipment server already compiles.
The resulting communication process provides Get and
Set access to every declared device property and the
‘empty’ server action via the Navigator. The real time
process can launch the ‘empty’ RT actions in accordance
with the declared event-action map. The specific actions
can then be coded by the developer.

The testing phase
As mentioned earlier, the Navigator is a generic

application, driven by the automatically generated Java
stubs which allow access to all properties in all declared
device instances of the equipment class. It supports access
to compound data types as well as atomic command
response.

The framework also provides system-level services to
monitor the processes and follows their activity without
degrading the real time performance of the front end
processes. A front-end process activity tool allows the
remote surveillance of any FESA process, and allows the
run-time control of parameters like the verbosity level and
the logging history depth.

The framework also incorporates a hardware driver
generation tool, developed for the BISCoTO [5] project.
This tool allows the automatic generation of a VME board
driver with the corresponding access library based on its
registers and address mapping description. It also
systematically generates a simulation driver, which
emulates the same interface based on kernel-space
memory instead of real VME access. This feature, when
combined with the event source simulation, allows the
developer to complete his/her equipment software even if
the hardware or timing events only exist on paper.

PROJECT STATUS
The architecture described here is currently being

designed and implemented by a joint-team of both end-
users and maintenance engineers. It is now in the
functioning prototype phase.

The FESA framework will be made available on the
AB operational front end platforms, i.e. Linux and
LynxOS real time OS. It has been developed in C++ but
will be available to pure C developers via a C interface in
the near future.

The software tools (configuration, navigator and
process activity survey tools) are written in Java and are
thus platform independent. They are currently used on
both the Linux and Windows platforms.

The first version of the framework will be delivered to
the equipment group developers in November 2003 and
will be deployed operationally on several front-ends in
the LHC injector chain in 2004.

REFERENCES
[1] http://public.web.cern.ch/public/
[2] http://ab-div.web.cern.ch/ab-div/
[3] http://user.web.cern.ch/user/Index/LHC.html
[4] http://sl-div-bi-sw.web.cern.ch/sl-div-bi-

sw/Activities/FEComSA/entry.htm
[5] A. Guerrero and S. Jackson: “Common Templates and

Organisation for CERN Beam Instrumentation Front-
End Software Upgrade” (these proceedings).

Proceedings of ICALEPCS2003, Gyeongju, Korea

344

	CERN FRONT-END SOFTWARE ARCHITECTURE �FOR ACCELERATOR CONTROLS
	INTRODUCTION
	ARCHITECTURE MODEL
	Structure
	Behaviour

	WORKFLOW & SOFTWARE TOOLS
	The design phase
	The coding phase
	The testing phase

	PROJECT STATUS
	REFERENCES

