
WHERE AND WHAT EXACTLY IS “KNOWLEDGE” IN CONTROL
SYSTEMS

M. Plesko*, G. Tkacik, Cosylab and J. Stefan Institute, Ljubljana, Slovenia

Abstract USE CASE: A POWER SUPPLY
A straightforward answer would be that Knowledge

comprises configuration data and that it is stored in
databases. However, this would be only a partial answer.
In order to have Knowledge of the control system
configuration, it is not sufficient to know only the data
themselves, not even the structure of the database tables.
Only the interpretation of the data by some application
can be seen as true Knowledge. This means that most of
the Knowledge is coded into some algorithm or software
interface and has therefore little to do with pure
configuration data. A simple proof by construction of the
above statement is that any application programmer has to
read first the documentation, or worse, ask the designer of
the database or data server for details. Such Knowledge
about data is denoted meta-data. We present a use case
showing the need for meta-information in applications
and discuss how and where it is handled in different
control system designs. In order to be used for true,
system independent, generic applications, meta-data must
exist in generic machine readable form. In the paper we
argue that these meta-data can be described by models,
which, although different from system to system, can be
reduced to some common types of functionality and
described accordingly. After a description of what type of
information needs to be contained in meta-data in the case
of control systems, we discuss how to obtain meta data
from the control system components such as
configuration files, RDBMS, etc.. We finish by
speculating what kind of new knowledge management
and development tools could be built on such basis,
bringing thus advantages also to non-generic custom
applications and control system management in general.

Definitions
The power supply is a device that has the ability to be

turned on, off and to be reset. It also has a controllable
value representing the desired current of floating point
type; a readback value that denotes the actual current
produced by the power supply and the bit-pattern value
that reports the power supply status (e.g. alarm
conditions).

Notice that I am only talking about concepts (device,
ability to perform an action, value), relationships (has)
and attributes (being of floating point type, being
controllable). No mention is made of how these are
mapped into any specific design – be it an object oriented
accelerator model, a database table or an XML tree. So
our reasoning will be true for any control system that
controls such a power supply, from channel-based to
object-oriented.

Naturally, I have introduced a simplified power supply
just as an example, without losing generality in my
arguments. The full list of relations and attributes can be
significantly longer. All are properly handled in our
Abeans libraries [1] and described in more detail in
another paper to this conference [2].

Increasing Levels of Abstraction
In order to be able to talk about concepts of knowledge,

I have introduced new ones (“concept”, “relationship”,
“attribute”), i.e. I have brought into play concepts on one
higher level of abstraction. Let’s call a specific power
supply, e.g. “PSBEND_M.01” a level 0 or instance name.
It is an instance of device type (or device class for Java
and C++ programmers) “PowerSupply”, a level 1 or type
name. The noun “PowerSupply” itself is an instance of
“entity”, which is a level 2 or meta-type name.

INTRODUCTION
In this article, we discuss Knowledge in control

systems using our standard Cosylab example, a power
supply device. We gradually introduce new concepts that
describe higher and higher levels of abstraction of a
power supply and point out which specific technologies
can be used to implement these concepts.

By using such vocabulary we can take a look at how
existing control systems handle large numbers of power
supplies. Typically, there will be a power supply table
application, offering a view of the settings and statuses of
a certain subgroup of power supplies.

Abstraction Level 0: Instance Data A discussion about the basic concepts of meta-data and
models, i.e. introspection/reflection, is always risky. It
tends to be either too formal to be understandable or too
poetic to be of any practical use. We will therefore spend
a lot of time with examples that illustrate the concepts,
just to be sure that the formal definitions do not obscure
the flow of reasoning. In this way we hope both to
successfully convey the importance of meta-data in
control systems and to avoid the two extremes.

The most naive way of creating such an application is
to design the GUI and the application logic in whichever
programming language, and to put, into the same
programming language, also the list of names of all power
supplies (a list of level 0, or instance, names). We use the
term hardcoding to denote such an approach, because
level 0 names are statically enumerated in a language,
which is normally used to declare type 1 entities. To be
concrete: if you declare a PowerSupply class in Java,
create an application that uses it (the power supply table

*mark.plesko@cosylab.com

Proceedings of ICALEPCS2003, Gyeongju, Korea

298

application) and enumerate all of your 120 power supplies
in Java by name, you hardcode.

Abstraction Level 1: Type Data
What if a new power supply is added – should the

application code be modified? We see that for reasons of
maintainability and flexibility we have to separate level 0
names from level 1 names: Level 1 declarations (types)
remain in the code, while level 0 instance listings are
moved to a file, or a database. We have thus separated
procedures from data, or in other words, introduced the
distinction between procedural and declarative styles.
What remains in the code on level 1 are procedures, or
rules for manipulating content, which is now level 0. A
file containing a list of power supply names in the form of
“linac = {PSBEND_M.01, PSBEND_M.02, ...” is now
perceived as a declaration of what a “linac” is.

While the traditional approach takes into account
(supposedly; let’s hypothetically forget about
configuration problems) the dynamic nature of instance
listings (in other words, content – level 0), it is still prone
to the same drawbacks on the type level (structure – level
1, as opposed to content). In order to be able to do
anything useful with the list of power supplies, the
application uses application logic or algorithms to
display or even control the power supplies. Algorithms
presuppose that there is some structure implicit under the
power supply name “PSBEND_M.01”. For example, my
code that reads the current in “PSBEND_M.01” knows
that it has to send certain bits over the network which
encode “PSBEND_M.01/current” name and it knows it
has to expect a single response that has to be interpreted
as a coding of a floating point number. In essence, I
hardcode the algorithm: I use the knowledge of the
structure of power supply in my head and translate it into
procedural logic.

Abstraction Level 2: Meta-Data
But even such hardcoding of algorithms can be

avoided. We can repeat the same process as in the
separation of level 0 and level 1, by introducing and
coding level 2, and moving level 1 out of the code or at
least into a separate, well-defined and delimited part of
the code. Think of using introspection in Java to invoke
methods as opposed to simply calling them:

myPS.readCurrent(value)
hardcodes the knowledge about the power supply into

the algorithm, while
Class.forName(“myPS”).newInstance().getMethod(“rea

dCurrent”).invoke(paramlist, value)
Does not. The latter code snippet contains all

information of methods and parameters as strings, which
can be conveniently stored in configuration files. Thus,
we have data about how to manipulate data, or more
generally, data about data, i.e. meta-data. Together, data
and meta-data form the full knowledge of the control
system and by finding a means of describing them
formally, we can finally talk about managing Knowledge
in a generic way.

One may ask: why introduce the additional level of
abstraction? After all, the introspective method execution
in the latter code snippet is by far more complex and less
clear than the former. A seemingly compelling reason is to
be able to cope with the change of device structure
without any changes in application code, easing
maintenance. The price to pay is high, because as such
flexible generic (as opposed to traditional) code does not
hardcode power supply structure, it not just more complex
but also more complicated to design. So is the
generalization worth the effort? It is, if we have to write
applications such as described in the next section.

BENEFICIAL USES OF META-DATA IN
CONTROL SYSTEMS

Treating Knowledge as Configuration Data
Paralleling the benefits gained by separating levels 0

and 1, we again increase both flexibility (tolerating
addition and removal of content) and maintainability
(tolerating change in structure) by factoring away level 2
from level 1. Changes in power supply structure are now
realized by changing the content in some file or database
or XML that says

power supply =
 {current, readback, status, on, off, reset}
This is a declarative change as opposed to procedural

change and is easier to implement. Moreover, it is seen as
a part of a configuration, meaning that configuration
management techniques (versioning, backups,
centralization) can be applied to it. Maintainability is
increased because level 2 structures, such as “entity”,
“containment”, etc., are highly unlikely to change and
because level 2 contains such a small number of highly
abstract concepts which are common across machines.

Writing Generic Applications
Generic applications get simpler when moving one

abstraction level higher, because the number of concepts
needed for the complete description of the system on that
level will be both smaller, and more universal. Keeping
in mind that the most maintainable code is that which
does not exist at all, and taking into account that a generic
application is the one which replaces a whole class of
applications with similar functions on all existing devices
or subsystems, being generic is the most efficient way of
making a maintainable product.

Control System Independent Applications
Finally, generic applications can be written such that

they use meta-data only. Thus they tolerate changes in
structure and content so well that they are portable across
different machine architectures and control systems, as
long as all adhere to the same basic concepts: While my
power supply and yours may differ (and thus our
traditional power supply table applications would be
different and incompatible), we might at least agree that a
power supply is an entity, which contains certain actions
and properties and that, further, “property” contains a

Proceedings of ICALEPCS2003, Gyeongju, Korea

299

value that can be read and optionally set, and a set of
characteristics; and so on. We will see in this article how
it can be done by extracting meta-data from different
control system models.

Add a disclaimer: the development efforts are justified
only when a company such as Cosylab or a community
actually must produce a portable application that runs on
several installations. If this is not a requirement, a
traditional level 1 application will definitely be the
preferred choice.

WHERE ARE META-DATA HIDDEN IN
CONTROL SYSTEMS

As it turns out, all control systems deal with meta-data,
although they usually don’t treat them separately, but
rather keep them implicitly in several places.

Meta-Data in Naming Conventions
Take for example a control system that relies heavily on

a naming convention approach. What we humans perceive
as structure (such as the fact that power supplies have a
current, and moreover, even the fact that the power
supplies exist as independent entities themselves) is, in
the naming convention approach, actually realized on
instance level, or level 0. If we stick solely to the
information present in the control system, then the control
system is a collection of independent channels with
names like “PSBEND_M.01:current”, “PSBEND_M.01:
readback”, “PSBEND_M.02:current” and so on. Although
our brains see hierarchy in the names there is actually
none without our explicit additional knowledge. The point
where such additional knowledge gets coded into a
program are the routines such as getDeviceName() and
getPropertyName() that split the names at colon ‘:’ signs.
The problem with this approach, however, is that it is very
easy to be inconsistent: name parsing occurs in many
places, colons can incidentally be replaced by semicolons
which lead to unpredictable errors, detected only at run-
time and so on. In addition, we are not making use of the
syntactical apparatus that an object-oriented language is
offering.

Meta-Data in Programming Language Objects
On the other hand, if I define a power supply as a C++

or Java class and use object oriented (OO) typing to
declare that it is composed of three methods, namely on(),
off(), reset() and that it contains by reference three other
class instances that represent current, readback, status, I
have put more of my human knowledge onto level 1 and
less onto level 0. In this scenario, I have to list on level 0
only the instance names of power supplies, no longer of
channels. Because I have defined PowerSupply to be an
OO class, each of my applications that reference this class
“knows” automatically that each power supply has a
current. The compiler checks at compile time what was
before implicit: there are no colon-goes-to-semicolon
mistakes. An application programmer does not need tons
of paper documentation showing all names and data

exchanged when each name is used, but only the list of
power supplies and the definition of a single power
supply. In addition, the definition can be made in a formal
language, such as UML or OMG’s IDL. In the case of
Java,, there is an additional set of tools that can be used to
manipulate these formal definitions, such as
java.lang.reflect classes, classloaders, javadoc
documentation tool, to mention just a few.

ABEANS – A FRAMEWORK THAT DEALS
WITH META-DATA

How does one use an object-oriented language such as
Java to manage three levels (instance, class, meta-class)
instead of two (instance and class)? And what are level 2
concepts that are common to all control systems, what are
the relationships between them and what are their
attributes? How do we decide whether to put simply more
structure into level 1 and less content into level 0, or
introduce level 2?

We will show it on a simple example: My goal is to
move the power supply structure out from the power
supply application to an external data source (XML file,
RDBMS, CORBA Interface Repository etc), and to create
a set of level 2 concepts that my application will use to
learn what a power supply is from that external data
source. My new, generic, power supply application will
learn what your concept of “PowerSupply”
encompasses from an external data source provided by
you and will run unchanged on your system as well as
it does on mine. This scheme will work if both you and
me use the same level 2 concepts to describe power
supplies, because these level 2 things are the ones that
remain hardcoded in the generic power supply
application.

The Abeans Way
In our effort to produce generic applications we have

undertaken a careful study of existing techniques for
manipulating meta-data, such as the CORBA Meta-Object
Facility[3], W3C’s RDF[4] (Resource Description
Framework) and XML UML mapping[5]. We concluded
that these techniques are too complicated because they
have been designed to describe any conceivable level 1
structure, while we can restrict ourselves to control
systems. As a result, we have developed our own,
reasonably simple yet complete meta-data engine as part
of the Abeans framework.

The many level 2 concepts used by Abeans libraries to
describe level 1 control system entities are listed and
explained in depth in reference [2]. Here, instead of being
complete, we will rather explain the main idea and walk
through an example.

As we want to deal with meta-data in a generic way, we
have separated the way a programmer defines controlled
objects (we call that the model) from the way (s)he
communicates with the data source (we call that the plug).

There is one plug for each control system API (e.g.
EPICS, TINE, ACS, etc.) and one model for each way of

Proceedings of ICALEPCS2003, Gyeongju, Korea

300

dealing with data (e.g. channel-based, device-oriented,
etc.) There is no one-to-one relation between models and
plugs: for example, both EPICS and TINE, although
having very different plugs, work on the same channel-
based model. The application programmer interacts just
with models – a plug has been written once and for all,
just like a hardware driver.

In between the model and the plug is a thin but crucial
layer that treats all data in the same manner, be it a read or
write request, an action like on or off, or just a callback
waiting for a monitor event to occur. We call that layer the
Abeans Engine. It uses a canonical request/response
format according to the W3C standard URI (Universal
Resource Identifier – similar, but more general than an
URL) [6], which can describe any data and interactions
within any control system. An Abeans URI name contains
schema, authority, hierarchical name and query parts and
designates a unique target for request, e.g.:
abeans-ACS://server.cosylab.com/linac/PSBEND_M.01/
current/maximum?get

When a request is issued to such target, a response will
be expected, carrying the result from the remote system.
This is how all remote interactions are modelled
internally in Abeans. The Abeans meta libraries, through
the triplet “URI Name, Descriptor, Naming Context” (see
[2] for explanation of this triplet) describe all possible
request targets, their names, all possible valid requests
that can be issued and all possible responses, including
errors, exceptions and connection timeouts.

Be aware that such requests can be more than just
simple get/set commands – they can be asynchronous,
define callbacks, repeated monitors, etc. What a request
can do and what responses are to be expected, the list of
parameters, name-value pairs, timeout data, error stack,
etc. is all stored in the Descriptor.

All models reduce their interactions with the control
system to Abeans Engine requests and responses, which
are described by universal level 2 meta objects. When a
plug receives an Abeans engine request, it executes the
request on whichever actual communication system the
Abeans are running, be it ACS CORBA, TINE, EPICS or
something else.

A Step-By-Step Walk Through an Abeans
Generic Application

It would make little sense to add the Engine as another
layer, even though it makes the code cleaner. However,
generic applications can exchange data directly through
Abeans Engine and obtain the necessary structure through
Abeans Meta libraries. To better understand how this is
possible, consider the following example procedure:

1. A generic power supply table application starts up on
a certain system. Using Abeans, it declares that it
will use Abeans Engine directly and accesses the
Abeans Directory, a service to the engine, which
contains all level names and level 1 types as entities.
The Abeans Directory, which contains all meta-data,
checks using hardcoded level 2 rules, if a type called
“PowerSupply” exists on the system.

2. The Abeans Directory returns the following complex
but complete information: “PowerSupply” is indeed
an entity (a directory entry described by a descriptor)
and is moreover composed of other entities, which
are on¸ off, reset, readback, current, status. The first
three are nodes in the directory and listed as request
targets, meaning that they can be executed and a
return value or callback must be expected.
Meanwhile, readback, current and status are
composed of more atomic entries, such as dynamic
value (with get and set capabilities which are atomic
and are request targets), characteristics (minimum,
maximum, format etc, with their get capabilities that
are request targets as well) and so on.

3. In addition, the directory shows that there are 120
instances of “PowerSupply” in the system and lists
their names. The Power Supply descriptor also tells
that in the Abeans modeling library package there is
actually a Java PowerSupply class that has 1-to-1
mapping to the directory entries on, off, reset,
current, readback, and status. In addition, it states
that such class can be connected to a process on a
remote machine, such that, for example, method on()
invoked on Java class will actually turn the physical
device on.

4. My generic power supply table can now construct its
GUI by allocating space for 3 displayer entities that
will represent current, readback and status, using
appropriate GUI widgets (slider for current that is
settable, gauge for readback and led panel for
status). Abeans can help the application by
maintaining, as part of meta-information, the records
which GUI widget is most suitable for displaying a
certain entity. The application, for example, can also
produce pop-up menu containing off, on and reset
actions whenever the user right-clicks on a power
supply.

5. When, for example, the user selects on from such a
pop-up menu, the application further analyses the
directory descriptor for on. It finds out that this is a
request target which is invoked by addressing
Abeans Engine request to target the URI described
by:
abeans-ACS://server.ij.si/linac/PSBEND_M.01/on,
that this request needs no parameters, should be
timed to complete within one second, executes
asynchronously, returns exactly one void response in
case of successful execution, produces no linkable
transient resource allocations (such as a monitor) and
so on. Using this knowledge, the application actually
creates a request instance and sends it through
Abeans Engine to the plug, turning the power supply
on.

Note that the above example works exactly the same,
irrespective whether the power supply is a programming
object in, say, CORBA, or just a name in a collection of
channels. In the latter, the directory would simply report
“PSBEND_M.01” to be a naming context representable
entity (i.e. a name hierarchy) that has no remote

Proceedings of ICALEPCS2003, Gyeongju, Korea

301

connection available. Instead, current, for example,
would be connectable, i.e. represented by a real remote
channel or object, whereas it would be only a property of
a remote object in the former. The generic power supply
table is obviously not structurally dependent on the power
supply class: it will work with power supply that lacks the
readback property but contains an additional
reversePolarity() method, for instance.

Extracting Meta-Data for Abeans
Having demonstrated the powerful nature of the generic

approach on a specific example, we finally turn to the
question of how the directory gets populated by meta-
data. After all, it is its quality and organization that
guarantees the proper functioning of generic applications.
Abeans design requires that meta-information is inserted
into the directory by the plugs layer. Each plug is free to
obtain the data in any way it sees fit. The reason is that
only the plug “knows” about the control system and
therefore should know where and how to obtain meta-
data. – let me enumerate some of the more popular
approaches.

• Naming convention. If the naming convention is
strictly adhered to by all entities in the system, the
plug can obtain entity lists and parse entity names
to generate hierarchy, as described in section 4.1.
Obviously, the strictness of the naming convention
is proportional to the amount of data that can be
automatically extracted by the plug and placed into
the directory. All exceptions have to be hardcoded.

• Class declarations. If there is structure present on
level 1 in the model as Java class or CORBA IDL
definitions, then introspection / reflection
capabilities of Java or CORBA Interface
Repository can be used in conjunction with design
pattern rules (similar to those in Java Beans) to
extract meta information from class definitions.

• Structure database. Sometimes meta-data are
stored separately in an SQL database or XML
structure file. The plug can parse such resource
and populate the directory. Often, however, such
resources were designed for a specific purpose and
lack all the data that the directory requires. In this
case information in a database must either be
supplemented with additional hardcoded
information, name pattern recognition and so on.

The described sources of meta-data are often
incomplete and have to be combined to fully populate the
directory. Abeans sets as their goal the interoperability of
generic applications and therefore requires that the plugs
provide such data. In fact, the problem of re-writing
traditional applications during porting is now reduced to
providing meta-data with level 2 Abeans structure by the
plug (communication system driver), while the
application remains the same, along with its GUI
representation.

CONCLUSIONS
Let’s conclude with future possibilities of the meta-data

approach. Should we go even one step beyond meta-data
and introduce abstraction layer 3, whatever that may be?
It is actually not necessary, as the meta-data concept is
powerful enough to apply it on itself, i.e. to use meta-data
to describe meta-data. We actually plan to describe
Abeans with their own meta-model, i.e. make Abeans
controllable as if they were a control system from within
Abeans. This would offer intriguing possibilities of
making design-time and run-time equal and would enable
the applications to be constructed, modified and tested
dynamically on a running system. A further line of
thought that offers great potential benefits is the analysis
of data types, data transformations and views that exist in
control systems: the directory could contain instructions
on possible visual and textual representations of the data,
adding some “common sense” to completely generic
browsers (such as the Abeans Explorer [7]). Consequently
the program would “know” if a certain array represents a
time series, a profile, how it is indexed, if it makes sense
to speak about a single value of the array and so on. The
user would benefit because many data display and
analysis problems could be solved only once and would
behave in the same way among applications. Concepts
known from office suites, such as clipboard, drag&drop,
report creation and so on start to make sense in this
context. Using those tools, any conventional application
could be instantiated at run-time from a simple
configuration file. The problem of renaming and
moving/removing controlled devices to/from applications
would be trivially managed from a central configuration
database. Rolling back to previous versions of
applications would mean just to replace the configuration
file with an old version.

REFERENCES
[1] I. Verstovsek et al., “Abeans: Application

Development Framework for Java”, this conference.
[2] G. Tkacik, M. Plesko “A Reflection on Introspection”,

this conference.
[3] Petr Hnetynka, http://nenya.ms.mff.cuni.cz/teaching/

seminars/2003-04-23-Hnetynka-MDA.pdf
[4] O. Lassila et al., http://www.w3.org/TR/REC-rdf-

syntax
[5] Object Management Group, XML Metadata

Interchange, http://www.omg.org
[6] T. Berners-Lee et al., RFC 2396,

http://www.ietf.org/rfc/rfc2396.txt
[7] I. Verstovsek, EPICS spring collaboration meeting

2003, Abingdon, UK

Proceedings of ICALEPCS2003, Gyeongju, Korea

302

	WHERE AND WHAT EXACTLY IS “KNOWLEDGE” IN CONTROL
	INTRODUCTION
	USE CASE: A POWER SUPPLY
	Definitions
	Increasing Levels of Abstraction
	Abstraction Level 0: Instance Data
	Abstraction Level 1: Type Data
	Abstraction Level 2: Meta-Data

	BENEFICIAL USES OF META-DATA IN CONTROL SYSTEMS
	Treating Knowledge as Configuration Data
	Writing Generic Applications
	Control System Independent Applications

	WHERE ARE META-DATA HIDDEN IN CONTROL SYSTEMS
	Meta-Data in Naming Conventions
	Meta-Data in Programming Language Objects

	ABEANS – A FRAMEWORK THAT DEALS WITH META-DATA
	The Abeans Way
	A Step-By-Step Walk Through an Abeans Generic Application
	Extracting Meta-Data for Abeans

	CONCLUSIONS
	REFERENCES

