
APPLICATION OF MODEL DRIVEN DEVELOPMENT TO CONTROL
SYSTEMS

Klemen Žagar, Anže Vodovnik, Jožef Stefan Institute and Cosylab, Ljubljana, Slovenia

Abstract

Model Driven Development (MDD) is a technique em-
ployed by software architects that allows them to first
model the essence of a system, and then uses that model for
further development. In contrast to non-MDD approach,
the model is not just one of the forms of the system’s doc-
umentation, but a central artifact from which all the oth-
ers, such as program source code, documentation, refer-
ence manual, etc., are derived in an automated or semi-
automated fashion using generators and Computer Aided
Software Engineering (CASE) tools. In this paper the state-
of-the-art of MDD is presented. First, a brief overview is
given of the Unified Modeling Language (UML), which is
the de facto standard for representation of models. Then,
the evolution of CASE tools in the past two years is out-
lined. Finally, our work on XML-centric code generation
tools and their application to control system development
(e.g., the ALMA Common Software collaboration with Eu-
ropean Southern Observatory) is presented.

INTRODUCTION

There is nothing new about the use of models in software
engineering. In fact, software itself is a model of reality,
e.g., for the purposes of simulation, prediction or analysis.
Ultimately, such model is represented in machine-readable
code.

Because the only things machines are really good at are
basic arithmetics and pushing data back and forth, real-life
issues require a great deal of effort to explain using such a
limited – and unnatural – conceptual system. To make the
process of explaining to machines (i.e., software engineer-
ing) easier, high-level programming languages were intro-
duced for modeling lower-level ones, and compilers were
developed whose task was transformation of the higher-
level models to the lower-level ones (e.g., from the Java
programming language to Java P-code, or from the C++
programming language to assembly language, and finally
machine code).

Ideally, the software model would be equivalent to the
model through which we, humans, perceive reality. In such
a model, one would not talk of functions, variables, and,
god forbid, pointers, but instead of power supplies, bend-
ing magnets, beams, antennas and stars. This is where
Model Driven Development (MDD), and its cornerstone,
the Model Driven Architecture (MDA), enter the scene.

DEVELOPING SOFTWARE FOR
CONTROL SYSTEMS

Software development in the field of control systems is
very much like software development in general. Devel-
opment disciplines, such as requirements analysis, design,
implementation, and testing are all present, and activities
performed within each are very much as everywhere else.
Also, standard technologies are employed: client/server,
three-tier architecture, Java, web servers, ...

What is specific, however, is the problem domain which
the software targets. Typical software found in business is
concerned with manipulation of records in databases: in-
sertion of purchase orders, generation of invoices based on
them, ... In control systems, data – typically information
related to logging and archiving – is only part of the story,
as the basic entities that control systems are concerned with
are the devices that are subjected to its control.

Initial Construction

Before software is constructed, its general structure (the
high-level architecture) is defined and documented. After-
wards, design details are specified. Finally, the design is
implemented.

At the end of construction, the delivered software and
its blue-prints are only rarely synchronized. This is mostly
because synchronization requires a lot of effort and tenac-
ity, habits, that one tends to abolish quite fast due to lack of
time, discipline or both.

Maintenance

What typically happens when software or any other
product of engineering is made to face the challenges of
real life is that some things don’t quite work as expected. In
some cases, even the functionality which was the project’s
mission doesn’t work, or it dangerously interferes with
other subsystems. Defects in software, also known as bugs,
are gradually resolved during software maintenance.

Another reason why software needs to be maintained is
because its environment or requirements change.

In any case, accurate blue-prints are highly desirable.
Again, any modifications to the software should be affected
at the level of design documents, or else further mainte-
nance will be becoming more and more difficult, possibly
resulting in a complete rewrite of the software.

Proceedings of ICALEPCS2003, Gyeongju, Korea

272



MODELS

The purpose of a model is to describe reality. Models
are typically simplifications, and focus on only a particu-
lar aspect of what they model. For example, a physical
phenomenon can be simultaneously described using a ther-
modynamical, electrical and mechanical model.

MODEL DRIVEN ARCHITECTURE

Model Driven Architecture tries to accomplish two
goals: easier ways of synchronizing the blue-prints with
the software, and a taxonomy of models along with trans-
formations between them.

The term Model Driven Architecture was coined and pre-
cisely defined through various specifications by the Object
Management Group (OMG) [1].

Platform-Independent Model (PIM)

The Platform-Independent Model is a model in which
the intricacies of concrete implementation platform are no
longer visible – instead, only the models of entities from
the real life are present.

In the domain of control systems, one would talk about
devices, what their properties are and how they relate to
each other.

Ideally, one would also be capable of describing behav-
ior of a system using a platform independant model (such
an example is shown in Figure 2). Unfortunately, a plat-
form independant language capable of describing actions
is not yet standardized, but this effort is under way in the
form of UML 2.0 specification (a draft version as of this
writing).

Figure 1: The Platform-Independant Model (PIM) of a
power supply and its specialization that also supports ramp-
ing via a trigger (the synchronization bus).

Platform-Specific Model (PSM)

The Platform-Specific Model models the software. As
such, it depends on the platform upon which software is
built. Thus, if software were written in C++, the PSM
would be different than if it were written using Java.

Figure 2: A state diagram describing the behavior of a
ramped power supply from Figure 1.

Ideally, one would be able to automatically produce the
PSM model from the PIM model. This transformation
could be conducted with a (CASE) tool, whose knowledge
would encompass:

• The structure of the PIM model (the meta-model).

• Design patterns to be used in the PSM model.

Figure 3: The platform specific model of the (ramped)
power supply, whose platform independant model is de-
picted in figure 1.

The Unified Modeling Language

Nowadays, the Unified Modeling Language [2] (UML)
is the de facto standard of the software industry used to de-
scribe models. The standard defines the notation of various
kinds of diagrams, among them:

• Class Diagrams describe the entities of the system,
their attributes (associated data) and operations (be-
havior). Figures 1 and 3 are examples of class dia-
grams.

• State Diagrams (e.g., Figure 2) describe behaviour
of a system in terms of states and transitions between
them, as well as actions that occur once inside a state,
or when entering or leaving it.

• Activity Diagrams for describing workflows.

• Sequence Diagrams for defining the sequencing of
interactions between entitities.

Proceedings of ICALEPCS2003, Gyeongju, Korea

273



• Use Case Diagrams for specifying the requirements
from the user’s perspective.

The most recent version of UML specification is 1.5, but
2.0 is in the process of finalization. Version 2.0’s major im-
provement is specification of a formal, platform indepen-
dant, language, which will be used for describing actions.

CASE TOOLS

Computer-Aided Software Engineering (CASE) tools
enable developers (in particular system analyists and soft-
ware architects) to create and maintain a high-level abstrac-
tion of the system. Typically, CASE tools support visual-
ization of various aspects of the software. These days, the
notation most commonly supported by CASE tools is the
UML.

IBM/Rational XDE

One of Rational’s (now a subsidiary of IBM) best known
products is Rational Rose, which allows architects to create
UML diagrams, and in some particular cases also provides
them with forward- (producing code from diagrams) and
reverse-engineering (producing diagrams from code).

The successor of Rose is Rational XDE [4]. It ships in
two editions, one for IBM’s WebSphere and Eclipse devel-
opment environments (Java), and another for Microsoft’s
.NET. Rational XDE offers customizable code generation
(also preserves user’s modifications) and support for design
patterns.

Omondo UML

Unlike Rational XDE, Omondo UML [5] is freely avail-
able (but not open source). All diagrams created with
Omondo UML are closely bound to Java code, either at the
class or package level. The tool assures that the diagram
and the code are always up-to-date: newly added method
will immediately appear in the diagrams, and vice-versa.

A very welcome benefit of Omondo UML is that it stores
its models in XML files, conformant to the XML for Meta-
data Interchange (XMI) format. This makes it possible
to programmatically manipulate the model, e.g., to gener-
ate code from it, or to make transformations upon it using
widely available tools (XSL/T transforms, for example).

CODE GENERATORS

Once a model is available, it is, in principle, possible
to transform it into working code. The transformation can
be performed on either the platform independant, or the
platform specific model.

Many Integrated Development Environment (IDE) tools
contain so called wizards, which allow developers to enter
several parameters, from which code is generated automat-
ically. Wizards allow the programmers to get up-to-speed
in a very short period of time, as typically the output of
a wizard is an already executable program. The output of

wizards serves as a basis which developers then modify to
suit their purposes.

However, wizards do not take any steps to assure syn-
chronization between the code of the model – as a matter
of fact, they are even unaware of any model. Code gener-
ators exist, however, which are given a higher level model
as input, and generate code that implements that model. To
name but a few:

• CORBA IDL compiler, which takes the interface def-
initions as inputs, and produces CORBA proxies and
stubs in a given programming language.

• Generators written using templating languages, such
as Extensible Stylesheet Language (XSL, [6]), Eclipse
Modeling Framework’s JET [7] or Apache Veloc-
ity [8]. Here, the developer has a lot more control over
what is generated, but is still incapable of modifying
the generated results without risking loss of his effort
during re-generation.

• Advanced generators, such as the Extensible Program
Generator Language (XPGL, [3]), or those embedded
in Rational XDE, especially dedicated to generating
code and preserving user’s modifications.

CONCLUSION

Today, modeling techniques are used primarily as a
means of designing and documenting the system. Unfor-
tunately, it takes a great deal of effort to properly synchro-
nize all the views of a complex model with the actual state
of implementation.

The field where modeling techniques have been particu-
larly successful are the embedded systems. This is mostly
because the behavior of embedded systems can be well de-
fined using state machines and Petri nets, which are fairly
easy to derive from code.

REFERENCES

[1] Object Management Group, “Model Driven Architecture”,
http://www.omg.org/mda

[2] Object Management Group, “Unified Modeling Language”,
http://www.omg.org/uml

[3] K. Zagar, A. Vodovnik, “Program Generators and Control
System Development”, PCaPAC 2002, Frascati, Italy, Octo-
ber 2002

[4] IBM/Rational, “Rational XDE Developer Plus for Java”

[5] Omondo, “Omondo UML”, http://www.omondo.com

[6] W3C, “Extensible Stylesheet Language (XSL)”,
http://www.w3.org/Style/XSL/

[7] eclipse.org, “Eclipse Modeling Framework (EMF)”,
http://eclipse.org/emf/

[8] The Apache Jakarta Project, “Velocity”,
http://jakarta.apache.org/velocity

Proceedings of ICALEPCS2003, Gyeongju, Korea

274


