
ACS – OVERVIEW OF TECHNICAL FEATURES

K. Žagar, M. Plesko, M. Šekoranja, I. Verštovsek, D. Vitas (JSI and Cosylab)
G. Chiozzi, B. Jeram, H. Sommer, R. Georgieva (ESO)

D. Fugate (NRAO)
R. Cirami, P. Di Marcantonio (INAF-AOT)

Abstract

The ACS is a CORBA-based framework for the de-
velopment of Control Systems and higher level data flow
and coordination applications. It is used to develop the
ALMA software and in particular the ALMA Control Sys-
tem. It currently runs in the ALMA Test Interferometer,
in the APEX radiotelescope and in the accelerator ANKA
in Karlsruhe. More about ACS status and developments
can be found in the article by G. Chiozzi [1]. This pa-
per provides an overview and description of ACS features.
ACS uses several standard CORBA services such as noti-
fication service, naming service, interface repository and
implementation repository. ACS hides all details of the un-
derlying mechanisms, which use many complex features
of CORBA, queuing, asynchronous communication, thread
pooling, life-cycle management, etc. In addition, ACS pro-
vides a powerful XML-based configuration database, syn-
chronous and asynchronous communication, configurable
monitors and alarms that automatically reconnect after a
server crash, run-time name/location resolution, archiving,
error system and logging system. Any logical or physical
device (e.g. power supply) in a control system is repre-
sented by a component. Component contains properties
- entities that can be monitored and controlled, and char-
acteristics which contain static data, such as name, units
or description. Component management is handled by the
ACS Component/Container model. In this simple model,
Containers manage the lifecycle of Components with the
help of a centralized Manager. The Component/Container
model is language and platform independent and the Man-
ager is capable of deploying, manage the lifecycle and lo-
cate Components in appropriate Containers written in C++,
Java and Python. Containers provide Components with a
very simple way to access common centralized services.
Clients written in any CORBA-aware language can ac-
cess these Containers and Components while the imple-
mentation of the servant side in any other of these lan-
guages would be easy. The Container also supports trans-
parent XML serialization of complex data entities (like
a complete Observing Proposal or an Observing Script)
through CORBA. This capability is very important to al-
low a smooth data flow from high level software down to
the Control System. ACS comes with all necessary generic
GUI applications and tools for management, display of logs
and alarms and a generic object explorer, which discovers
all CORBA objects, their attributes and commands at run-
time and allows the user to invoke any command. C++ is

the main language for the development of core Control Sys-
tem DOs and for real time applications. Work is being done
to port ACS to Real Time Linux. Coordination application,
clients, GUIs and general higher level applications are writ-
ten in Java and can run on any JVM-enabled platform. The
Java-ACS subset is therefore available as a light separate
package that can be installed on any platform where Java is
available. In C++, ACS uses the free ORB TAO, which is
based on the operating system abstraction platform ACE,
ACS has been ported to Windows, Linux, Solaris and Vx-
Works. On the Java side, JacORB is used. Python clients
are based on OmniORB. Accompanying this article, a live
demo of ACS will be presented at the conference.

INTRODUCTION

From the abstract point of view, control systems have
many things in common. Basically, they convey data ac-
quired from devices to the operator and/or control logic,
and commands issued by the operator/control logic back to
the devices.

Because large experimental physics facilities are inher-
ently complex, several processing units (host computers)
are needed to handle all control-related tasks, resulting in
a distributed system. In distributed systems, management
issues arise: which part of the system is operational and
which isn’t, what versions of device drivers are deployed,
how they are configured, etc.

With the aim to solve these issues we have developed the
Advanced Control System (ACS, [2]) framework, whose
technical features are presented in subsequent sections.

Note that abbreviation ACS has two interpretations, de-
pending on the context. In a standalone context, the
acronym stands for Advanced Control System, and is ap-
plicable to any control-system related application. In the
context of the Atacama Large Millimeter Array (ALMA)
project, ACS stands for ALMA Common Software. Here,
it contains additional services, build procedures and docu-
mentation that are specific to ALMA.

ARCHITECTURE

ACS-based distributed control systems span three tiers
(see Figure 1):

1. The presentation tier which is responsible for repre-
senting data to the human user.

Proceedings of ICALEPCS2003, Gyeongju, Korea

217



2. The middle tier where data is collected, analyzed,
converted and prepared for consumption by the pre-
sentation tier.

3. The hardware/database access tier for access-
ing/manipulating the hardware/database.

The Component/Container Model

At the core of the ACS is the component/container
model. On every host, a container is deployed, which has
the following responsibilities:

1. Contains components.

2. Management of components’ lifecycle (starting and
stopping components, loading component’s exe-
cutable code into memory, configuring components,
...).

3. Interception of calls to the components to per-
form custom marshalling/unmarshalling (e.g., seri-
alization/deserialization of complex objects to/from
XML structures).

4. Communication with the Manager (heartbeat, regis-
tration, deregistration, ...)

Configuration�
Database�

Device Driver�Device Driver�Device Driver�

Container�Container�

GUI Application�
GUI Application�

GUI Applications�

CosyBeans�

Abeans�

...�

Device�
Object�

(Component)�

Device�
Object�

(Component)�

Device�
Object�

(Component)�

Container�

P
�r�e

�s�e
�n

�t�a
�t�i�o

�n
�

T
�i�e

�r�
M

�i�d
�d

�l�e
� �T

�i�e
�r�

D
�a�t

�a�
 �a

�n�
d�

H
�a�

r�d
�w

�a�
r�e

�
A

�c�c
�e�s

�s� 
�T

�i�e
�r�

Manager�

Figure 1: ACS architecture.

Control System Components

In a control system, devices would be represented as
components. Such components would expose one or more
interfaces through which other components and GUI ap-
plications could manipulate the devices. All devices have
these things in common:

1. Their attributes correspond to input/output channels.

2. Their operations correspond to actions the devices are
capable of performing.

3. Operations and attributes can be accessed in a syn-
chronous or asynchronous manner.

Since ACS is object-oriented, these commonalities are de-
fined, once and for all, in the base class of all devices.

The Manager

Manager acts as a broker of components, offering its ser-
vices to other components, GUI applications, or other sub-
systems (e.g., automated schedulers, ...). Whenever access
to a component is desired, the requestor contacts the Man-
ager. To this end, the Manager maintains the register of all
components present in the system.

Not all components are necessarily active at a given point
in time (here, the term active denotes loaded in memory,
configured, and ready to respond to requests). If Manager
is requested for a component that is not active, it finds a
suitable container given the constraints specified in the con-
figuration database, and asks it to instantiate the compo-
nent. Once done, the Manager returns the reference to this
component to the requestor, to whom all the details related
to construction have been hidden.

Currently, there can be only one Manager in the system.
This is sufficient if the number of requests for components
per unit time is sufficiently low, so that the Manager does
not yet represent a bottleneck. There are, however, plans
to allow for multiple Managers, either as backups in a hot-
standby mode, or as having responsibility for only a part of
the system, similarly to Internet’s Domain Name System –
DNS (federation).

Manager’s knowledge of containers and their compo-
nents must not be lost. To achieve this, manager uses an
in-memory database of all components. The database is
replicated on persistant storage (e.g., hard disk) using trans-
actional techniques.

Manager can be tightly integrated with a CORBA
Naming Service. Whenever a component is regis-
tered/deregistered with the Manager, the Manager also up-
dates the associated Naming Service accordingly. This
way, CORBA applications that are not ACS-aware can still
gain access to components.

CORBA Middleware

Common Object Request Broker Architecture
(CORBA, [3]) is used to hide the intricacies of net-
work communication (socket binding, remote command
invocation, distributed object references, ...). CORBA
was chosen because it is a widely adopted standard, and
as such offers platform independance and an abundance
of existing services and solutions. ACS makes use of the
following CORBA services:

• Event and Notification Services are used by the
ACS’s logging and archiving subsystem, through

Proceedings of ICALEPCS2003, Gyeongju, Korea

218



which events and log entries are dispatched, filtered
and consumed.

• Naming Service is used in cooperation with the ACS
Manager to offer name-to-object resolution to clients
that are unaware of ACS.

• Generic applications such as Object Explorer use the
Interface Repository to determine which operations
and attributes are exposed by a given object, so that
they can construct calls to them in run-time.

CONFIGURATION DATABASE

Every component in the system must be configured. For
components that represent devices, the following data are
typically found in the configuration:

• The name of the device.

• List of properties (input and/or output channels).

• Characteristics of properties (name, physical units,
channel’s hardware address, range, ...).

To make maintenance easier, it is convenient to store the
entire configuration in a central place – the Configuration
Database.

The ACS’s Configuration Database (CDB) uses XML
for data storage and transport over the network. Config-
uration Database consists of a CORBA service implement-
ing a Data Access Layer (DAL) interface, and the Data
Access Object (DAO) interface, which makes typed and
easy-to-use access to the data possible.

Typically, only one DAL is deployed and registered with
the Manager. The Manager consults this DAL on the fol-
lowing occasions:

• When a component is requested that is not yet reg-
istered with the Manager, the Manager looks up the
component’s information in the CDB. The CDB is ex-
pected to contain the list of possible hosts (containers)
for the component, and the Manager chooses the most
appropriate of them for hosting the component.

• When a component is created, the component’s con-
tainer retrieves configuration data from CDB, wraps it
in a DAO object and gives it to the component.

With the CDB infrastructure, it will soon be possible to
write data to the database, not just access it for reading (the
WDAL.and WDAO interfaces). This functionality is im-
porant for configuration tools, through which it will be pos-
sible to reconfigure the control system without the need to
shut it down.

PLATFORMS AND LANGUAGES

ACS is developed and thoroughly tested on Microsoft
Windows, Linux, Sun Solaris and WindRiver VxWorks
platforms.

When developing with ACS, developers are not limited
to a single language: when they are in need of perfor-
mance or low-level programming, they would use C++ or
even C/assembly language. At a higher level, where perfor-
mance is not such an issue as inherent complexity, Python
or Java would be the platform of choice.

ABEANS

For development of applications in Java, it is possible
to use ACS services using the Abeans library [4]. Abeans
are a framework that provide an object model of the con-
trol system to the rest of the application, while hiding the
complexities of underlying middleware. This makes appli-
cation development much easier and more manageable.

CONCLUSION

ACS is a stable and comprehensive framework that al-
lows development of complex, yet maintainable control
systems. The investment into building this framework is
starting to pay off, thanks to its several deployments around
the globe. The increasing number of users provides the
development team with valuable feedback, such as reports
about unpredictable behavior in previously untested envi-
ronment, or requests for improvements, making it more
bug-free and generaly applicable [1].

In the upcoming years, ACS will address additional re-
quirements. In particular, it will become more scalable
and reliable through federation and fault-tolerance capabil-
ities of the management subsystem. Also, it will be ported
to embedded platforms to alleviate the need for expensive
middle-tier server computers.

REFERENCES

[1] G. Chiozzi et al., “The ALMA Common Software (ACS):
Status and Developments”, ICALEPCS 2003, Gyeongju, Ko-
rea, October 2003

[2] M. Plesko, K. Zagar, et al., “ACS – The Advanced Control
System”, PCaPAC 2002, Frascati, Italy, October 2002

[3] Object Management Group, “Common Object Request Bro-
ker Architecture Specification”, http://www.omg.org

[4] I. Verstovsek et al., “CosyFramework: Application Develop-
ment Framework for Java”, ICALEPCS 2003, Gyeongju, Ko-
rea, October 2003

Proceedings of ICALEPCS2003, Gyeongju, Korea

219


