
EPICS: OPERATING-SYSTEM-INDEPENDENT DEVICE/DRIVER
SUPPORT*

Martin R. Kraimer#, Argonne National Laboratory, 9700 South Cass Ave, Argonne IL 60439, USA

Abstract
Originally EPICS input/output controllers (IOCs) were

only supported on VME-based systems running the
vxWorks operating system. Now IOCs are supported on
many systems: vxWorks, RTEMS, Solaris, HPUX, Linux,
WIN32, and Darwin. A challenge is to provide operating-
system-independent device and driver support. This paper
presents some techniques for providing such support.

OVERVIEW
EPICS [1] (Experimental Physics and Industrial

Control System) is a set of software tools, libraries, and
applications developed collaboratively and used
worldwide to create distributed, real-time control systems
for scientific instruments such as particle accelerators,
telescopes, and other large scientific experiments. An
important component of all EPICS-based control systems
is a collection of input/output controllers (IOCs).

An IOC has three primary components: 1) a real-time
database; 2) channel access, which provides network
access to the database; and 3) device/driver support for
interfacing to equipment. This paper describes some
projects related to providing device/driver support on
non-vxWorks systems.

In order to support IOCs on platforms other than
vxWorks, operating-system-independent (OSI) applica-
tion program interfaces (APIs) were defined for threads,
semaphores, timers, etc. [2]. Providing support for a new
platform consists of providing an operating-system-
dependent implementation of the OSI APIs.

RTEMS
RTEMS is an open-source, real-time operating system

[3]. So far at least three sites are using RTEMS IOCs.

CLS – Canadian Light Source
The CLS uses RTEMS and Linux IOCs for their

control system [4]. The hardware platforms consist of
EROC embedded controllers and standard rack-mounted
PCs. An EROC is a low-cost embedded controller
developed for the CLS. It is used to control most of the
power supplies. It is also used for other control
applications such as stepper motor control.

SSRL – Stanford Synchrotron Radiation
Laboratory

As part of a major upgrade to the SSRL, the control
system is also being upgraded. The upgrade is using

VME-based IOCs with RTEMS as the operating system
[5]. The IOCs use a number of VME I/O modules that
were previously supported only on vxWorks IOCs.
EPICS already provided an API (devLib) that was almost
an OSI API. devLib provides methods for connecting to
interrupts, allocates VME memory, etc. Till Straumann
modified devLib so that it works on RTEMS. For the
SSRL VME I/O modules, he then modified the existing
EPICS drivers to use devLib rather than vxWorks-specific
APIs. His changes have been incorporated into EPICS
base so that devLib is now a supported OSI API. Thus
any driver that uses it can work on both vxWorks and
RTEMS.

NSLS – National Synchrotron Light Source
Many beamlines at NSLS have recently been upgraded

to use EPICS. NSLS is also investigating the use of
RTEMS instead of vxWorks [6]. They are using some of
the driver support implemented at SSRL and are using the
devLib API for other VME modules.

LABVIEWS
The Spallation Neutron Source (SNS) uses LabViews-

based systems for diagnostics. Two methods have been
developed for communication between LabViews and
EPICS: activeX controls and a shared memory DLL [7].
The shared memory DLL is the preferred method because
it provides high performance. Data flows in both
directions through the DLL. With this interface a
LabViews system appears to the rest of the control system
as an ordinary IOC.

PC104
The Jefferson National Accelerator Laboratory (JLAB)

has a portable NMR instrument. Previously the system
consisted of both the NMR chassis and a VME crate. The
VME chassis has been replaced by a PC104 attached to
the NMR chassis. The EPICS IOC is a PC104 using
Linux for its operating system [8]. The only interface
between the IOC and the NMR is a serial port. Thus it
was easy to write special device support that talks to the
serial port.

GPIBCORE
EPICS, before the OSI extensions, provided support for

GPIB. EPICS base provided support for the National
Instruments NI1014 VME GPIB controller. Benjamin
Franksen converted the code to support additional GPIB
controllers [9]. His approach was to define a controller-
independent API, implemented by drvGpib, that device
support uses, and an additional API that drvGpib uses to
access drivers for specific controllers. Benjamin

* Work supported by the U.S. Department of Energy, Office of Basic
Energy Sciences, under Contract No. W-31-109-ENG-38.

mrk@aps.anl.gov

Proceedings of ICALEPCS2003, Gyeongju, Korea

205

implemented a driver for the Hewlett Packard LAN GPIB
server. His implementation works on both a workstation
and on a vxWorks IOC.

Eric Norum and Marty Kraimer adapted Benjamin’s
GPIB support to use the EPICS OSI APIs. Thus the
support now works on all EPICS-supported platforms. In
addition, low-level serial drivers were implemented . As
long as the device support doesn’t use GPIB-specific
methods, like SRQs, it works for serial as well as GPIB
instruments. gpibCore support has been used on
vxWorks, Solaris, Linux, and Darwin IOCs.

NETWORK-BASED DEVICES
Program Logic Controllers (PLCs) and other intelligent

devices come with an Ethernet interface. At KEK in
Japan work is underway to provide a common framework
to support such devices [10]. The effort uses the EPICS
OSI interfaces to provide platform independence.

ASYNCHRONOUS DRIVER SUPPORT
Asynchronous Driver Support (ADS) will be the

successor to gpibCore [11]. The goal is to provide a
general-purpose facility for interfacing device support
code to device instances via a communication driver.

At the present time EPICS sites use several different
methods for communicating with serial devices. At each
site, however, normally only one method is used. Each
method has its own device support interface and also
provides low-level drivers for communicating with serial
interfaces. On vxWorks/VME systems a widely used
serial interface is the SBS octalUART, which is an
Industry Pack (IP) module that has eight serial ports.
EPICS support for this is available only for vxWorks. In
fact, several different versions of the octalUART support
are being used. Once a site has chosen a method for
communicating with serial devices, it is very hard to
change to another method that provides a different device
support interface.

With ADS, each existing serial support method can
appear the same at the device support layer, but all can
use common driver support. ADS is not limited to serial
devices but is intended to support any message-based
communication interface including serial, GPIB, and
Ethernet.

ADS provides the following features:
• A thread for each communication interface.
• A queue of requests to access the communication

interface. A queue request is a synchronous non-
blocking call.

• When a request is taken from the queue, a callback
specified with the queue request is called. This
callback can make calls to the communication
interface, which sends/receives messages from the
actual device.

At present ADS defines the following APIs:
• asynQueueManager – This defines methods for

communicating with a device over a
communication interface. The implementation
provides a thread for each interface. Methods are
provided to connect to an interface, queue requests,
and lock a set of requests. A method
(registerDevice) is called by lower-level drivers to
register each communication interface.

• asynDriver – This provides methods to connect and
disconnect from a communication interface and to
report status about the interface.

• octetDriver – This provides basic methods for
communicating with any message-based device,
i.e., methods to read and write messages.

• gpibDriver – An API for device support to access
GPIB-specific functions, e.g., SRQ handling,
addressed commands, universal commands, etc.

• gpibDevice – An API implemented by low-level
GPIB drivers and accessed by gpibDriver.

A low-level serial driver must implement asynDriver
and octetDriver. A low-level GPIB driver implements
only gpibDevice, which includes support for asynDriver,
octetDriver, and GPIB-specific methods.

Most device support needs only asynQueueManager,
asynDriver, and octetDriver. If device support uses only
these interfaces then it will work with ANY low-level
communication interface.

The following is a typical sequence of events for
establishing a connection to a device:

• asynQueueManager:connectDevice is called. This
establishes a connection to the communication
interface attached to the device.

• asynQueueManager:findDriver is called to find
octetDriver.

The following is a typical sequence of events for
issuing a command and getting a response from an
instrument:

• queue request
o asynQueueManager:queueRequest is called.

Associated with a request is a callback. When
the request is removed from the queue the
callback is called.

o It is possible to prevent other users from
accessing the communication interface
between queue request by calling
asynQueueManager:lock.

• call driver from the callback
o poctetDriver->write(…)
o poctetDriver-<read(…)

The queue request is a synchronous nonblocking
operation, i.e., it can be called by EPICS scan threads.
The queue request has an associated callback routine. The
callback calls write to send a message to the device and
read to get the response. The write and read requests are
handled by a low-level communication driver that
interfaces to the actual device.

Proceedings of ICALEPCS2003, Gyeongju, Korea

206

REFERENCES
[1] EPICS home page
 http://www.aps.anl.gov/epics
[2] M.R. Kraimer et al., “EPICS: A Retrospective on

Porting iocCore to Multiple Operating Systems,”
ICALEPCS 2001, San Jose, CA USA, Nov 2001,
238-240, 2002.

[3] W.E. Norum, “EPICS on the RTEMS Real-Time
Executive,” Proceedings of SRI2001, Madison,
Wisconsin, August, 2001, American Institute of
Physics, Review of Scientific Instrumentation,
January 2002.

[4] G. Wright, “RTEMS & EPICS at CLS,” EPICS
collaboration meeting, Jefferson Lab, Newport News,
Virginia , Fall 2003.

 http://www.jlab.org/intralab/calender/archive02/epics
[5] S. Allison, “RTEMS at SSRL,” European EPICS

Meeting, Abingdon, England, Spring 2003.
 http://www.diamond.ac.uk/Activity/EPICS

[6] K. Feng, “EPICS RTEMS OSI @ NSLS,” European
EPICS Meeting, Abingdon England, Spring 2003.

 http://www.diamond.ac.uk/Activity/EPICS
[7] D.H. Thompson and W. Blokland, “A Shared

Memory Interface between LabView and EPICS,”
these proceedings.

[8] A. Freyberger, “PC-104 as an IOC,” EPICS
collaboration meeting, Jefferson Lab, Newport News,
Virginia , Fall 2003.

 http://www.jlab.org/intralab/calender/archive02/epics
[9] B. Franksen, “GPIB Update,” European EPICS

Meeting, Berlin-Adlershof, Germany, Fall 1998.
 http://www-csr.bessy.de/control/Epics98
[10] J.O Odagire et al., “EPICS Device/Driver Support

Modules for Network-based Intelligent Controllers,”
these proceedings.

[11] M. Kraimer et al., “Asynchronous Driver Support,”
European EPICS Meeting, Abingdon England,
Spring 2003.

 http://www.diamond.ac.uk/Activity/EPICS

Proceedings of ICALEPCS2003, Gyeongju, Korea

207

	EPICS: OPERATING-SYSTEM-INDEPENDENT DEVICE/DRIVER SUPPORT*
	OVERVIEW
	RTEMS
	CLS – Canadian Light Source
	SSRL – Stanford Synchrotron Radiation Laboratory
	NSLS – National Synchrotron Light Source

	LABVIEWS
	PC104
	GPIBCORE
	NETWORK-BASED DEVICES
	ASYNCHRONOUS DRIVER SUPPORT
	REFERENCES

