
CS - A CONTROL SYSTEM FRAMEWORK FOR EXPERIMENTS (NOT
ONLY) AT GSI

D. Beck*, H. Brand, GSI, DVEE, Planckstr. 1, D-64291 Darmstadt, Germany
F. Herfurth, CERN, CH-1211 Genève 23, Switzerland

Abstract
GSI performs basic and applied research in physics and

related natural science disciplines using a heavy ion
accelerator facility. The control system group of the
department for Computing and Experiment Electronics
(DVEE) helps the experiments in developing and
implementing experiment control systems.

In many cases, control systems for small experiments
with up to a few thousands process variables have been
developed for specific experiments. The reusability of
such a system is limited. Another possibility is the
development of a general control system framework.
Such a framework can be applied to a large variety of
experiments by implementing a few experiment specific
add-ons. During the past two years, the Control System
(CS) framework [1], that is based on LabVIEW [2], has
been developed at GSI. In autumn 2002, that framework
has gone into production at the SHIPTRAP [3]
experiment.

INTRODUCTION
So far, the main focus of the control system group of

GSI/DVEE was on small systems of a few hundred up to
a few thousand process variables. Only a limited number
of persons are directly working at these small
experiments. Typically, a few PhD students do the major
part of the work and one student is responsible for the
control system. Since students leave after a few years, it is
not easy to keep the know-how within a research group.
In many cases, the graphical programming language
LabVIEW has become the default development
environment since it has a fast learning curve and
provides easy access to typical hardware equipment.

Around the year 2001 a new control system was
required for a couple of projects. SHIPTRAP [3] is placed
behind the velocity filter SHIP at GSI and makes heavy
ions produced by SHIP available to experiments at low
energy (< 1 eV). ISOLTRAP [4] at ISOLDE/CERN is a
facility tailored for mass measurements of unstable
nuclides far from stability. PHELIX [5] at GSI is a high
energy laser with the objective to combine intense laser
beams with high-current heavy-ion beams availabe at
GSI. LEBIT [6] is a facility at NSCL/MSU that employes
trap techniques to make rare species produced at a
fragment separator available to low energy experiments.

In such a situation the reusability of code plays a major
role in the design of a new control system. This gave rise
to the idea of developing the control system framework
CS based on LabVIEW. This development has two aims.
First, the framework should provide the basic

functionality that is common to the four experiments
mentioned here. A dedicated control system can easily be
set up by adding experiment specific add-ons to the
framework. Second, having in mind the future extension
of GSI, one must investigate how well such a LabVIEW
based system can be scaled to more than 100,000 process
variables.

REQUIREMENTS
The experiments require a highly flexible control

system, where operational states can be configured on the
fly. Another challenge is not so much the number of I/O
channels but the number of different hardware device
types. Even without programming experience, a PhD
student must be able to maintain and develop the system
further after a few months of learning time. A simple data
acquisition must be included in the control system.
SCADA functionalities like alarming, trending and user
management are desirable.

The four experiments mentioned above have to do more
than just setting some parameters and to acquire data.
Sequences containing of up to 50 specific actions have to
be repeated periodically with a rate exceeding 10Hz.
Moreover, the different steps in such a sequence need to
be synchronized with a precision of about 100ns,
sometimes even in the sub-nanosecond range.

Important is the ability to call any function of any
device at any moment. Then, observables can be
measured as a function of any parameter of the
experiment. This feature allows investigating systematic
effects and debugging of an apparatus even for those
parameters that are not used in the preconfigured
operational modes.

The controlled devices are distributed and connected to
different PCs. In some cases safety requires that the users
must not be close to the experiment. This implies a
distributed system with remote access.

SOLUTION
Today, the CS framework is based on LabVIEW only.

The third party toolkit ObjectVIEW [7] eases object
oriented programming with LabVIEW, but this toolkit is
not required. Most hardware devices stem from third
party manufacturers and can be connected via interfaces
like RS232, RS485, GPIB and CAN-Bus. OPC
connectivity gives access to, as an example, hardware
connected via Profibus. The required precision on the
synchronization is realized in configurable hardware like
delay gate and pattern generators.

*

Proceedings of ICALEPCS2003, Gyeongju, Korea

 Corresponding author: d.beck@gsi.de, +49 6159 71 2520
179

mailto:d.beck@gsi.de

Object oriented approach and multi-threading
Although LabVIEW is not object oriented, one can use

an object oriented approach within LabVIEW. Objects are
represented by Virtual Instruments (VIs) and classes by
so called VI-templates. During run time, multiple objects
(VIs) can be created dynamically from a class (VI-
template) by making use of the "VI server" functionality
of LabVIEW. Inheritance is possible, but not as straight
forward as in C++. The resulting class design has a
limited number of inheritance levels and the classes have
more functionality than in a real object oriented language.
The base class of the CS framework is the CAEObj class.
It provides active objects with the ability to communicate
via events. If required for reasons of consistency, access
to resources like attribute data can be locked by
semaphores. The BaseProcess class is a child of the
CAEObj class. It provides two threads, one for event
handling and one for periodic action. Watchdog
functionality for both threads is included. Optionally, a
flat state machine is available in a third thread. This class
also defines a protocol that is used for the event driven
communication. Almost all classes in the framework are
direct children of the BaseProcess class.

Event driven communication
In most cases, objects communicate via events. Direct

method calls are rarely used. Every object may send an
event to any other object. The receiver of an event and the
method to be called is specified by their names,
"ObjectName" and "EventName". Data are passed as byte
arrays. The BaseProcess class provides three types of
events.

• Simple: The sender sends an event to the receiver
• Synchronous: The sender sends an event to the

receiver and waits for an answer of the receiver
before its thread continues.

• Asynchronous: The sender sends an event to the
receiver. The receiver sends its answer to a third
object that has been specified by the sender.

Simple events may be buffered or unbuffered. The
other event types are always buffered.

The BaseProcess class provides a method
"GetDescriptors". By using this method one can query
each object for its event descriptors. These contain the
names of all events as well as the parameter and the
parameter types required by the corresponding methods.
Documentation about each method and its parameters is
included in the event descriptors. By this, the use of an
object via events is intuitive and almost self documenting.

SCADA functionality
SCADA functionality like trending, alarming and user

management is provided by the Datalogging &
Supervisory Control (DSC) module of LabVIEW.
However, the functionality of the DSC module is
encapsulated in the DSCIntProc class. This allows for a
possible exchange of the DSC module by other software,
if required in the future. The user management is not yet
implemented.

Distribution based on TCP/IP
LabVIEW does not provide the functionality of sending

events from one PC to another in the desired form. To
make this possible, the classes QueueListener,
QueueServer and QueueClient use their own protocol
above TCP/IP. An object on a remote node is addressed in
the form "ObjectName@NodeName".

Figure 1:
hardware
children o
direct met

Proceedings of ICALEPCS2003, Gyeongju, Korea
User PCControl GUIOn-line Analysis GUI

Sequencer

DataCollector DSC EngineDSC Interface

PPG100

Front-end PC n

DiscArchiver

Front-end PC 1

PPG_1

PPG100 Instr. Driver

DS345

DS345_1

DS345 Instr. Driver

SR430

SR430_1

SR430 Instr. Driver

Central PC

User PCControl GUIOn-line Analysis GUI

Sequencer

DataCollector DSC EngineDSC Interface

PPG100

Front-end PC n

DiscArchiver

Front-end PC 1

PPG_1

PPG100 Instr. Driver

DS345

DS345_1

DS345 Instr. Driver

DS345

DS345_1

DS345 Instr. Driver

SR430

SR430_1

SR430 Instr. Driver

Central PC

Simplified view of the SHIPTRAP control system. Solid bordered boxes with rectangular corners represent
like PCs or devices. Solid bordered boxes with round corners denote active objects of classes that are
f the BaseProcess class. Dashed bordered boxes represent libraries or drivers. Arrows indicate events or
hod calls.
180

THE SHIPTRAP CONTROL SYSTEM CONCLUSION
As an example for a system based on the CS

framework, Figure 1 shows the simplified design of the
SHIPTRAP control system. The "Sequencer" and the
GUIs have been derived from the "BaseProcess" class and
are experiment specific add-ons. All other classes are part
of the CS framework. The "ControlGUI" sends the
parameters to the "Sequencer", which creates and
parameterizes the objects required. Then, it starts the
pattern generator "PPG100_1", which produces bit
patterns. These are used to trigger devices and to
synchronize actions with a resolution of 100ns. Then, the
"Sequencer" calls the "DataCollector", which reads and
buffers data from the data acquisition devices like
"SR430_1". Clients are connected to the "DataCollector".
One is the "DiscArchiver" that retrieves and writes the
data to disk. Another client is the "On-line Analysis GUI"
which analyzes and displays part of the data. All objects
send their status and error information to the
"DSCInterface" object for trending and alarming. This is
indicated as a dashed arrow in the case of the
"Sequencer". Today, the SHIPTRAP control system uses
about 150 active objects that are distributed over four
PCs.

After a development time of about three man-years, the
CS framework is already in good shape. About 60 classes
have been written that allow to access arbitrary function
generators, delay gate generators, oscilloscopes, a multi
channel scaler, step motor controllers, high voltage

.

SCALING TO LARGE SYSTEMS
Today, around 100 active objects are used on each PC

and the number of PCs per control system is below ten.
This is sufficient for control systems with up to a few
thousand process variables. For scaling such a control
system to 100,000 and more process variables, one either
has to increase the number of active objects per PC or the
number of PCs or both. So far, the following bottle necks
for a LabVIEW based system have been identified.

A multi-threaded system must use so called "reentrant"
VIs. As an example, a VI waiting for events is used in
many threads at the same time. Unfortunately, LabVIEW
needs to load the code of a reentrant VI as often into
memory as the reentrant VI is used. As a result, lots of
memory is consumed. Typically, PCs with 100 objects
should have at least 512Mb of RAM.

Some applications requiring a high event rate observe
occasional crashes of the control system after a couple of
days. It can not be decided whether the crashes are due to
bugs in the CS framework or due to bugs in LabVIEW
itself. Due to the crash of the LabVIEW development
system itself, debugging is difficult if not impossible.

Each device or channel is represented by one object.
For starting the system, about 100 objects have to be
created per PC. Creating one object typically takes a few
seconds, so starting up one node would take a few
minutes in the ideal case. Unfortunately, the time required
to create a certain number of objects does not scale linear
with the number of objects as illustrated in Figure 2. This
is not a feature of our code, but results from the
LabVIEW system.

Proceedings of ICALEPCS2003, Gyeongju, Korea

181
0

1

2

3

4

5

6

1 21 41 61 81 101 121 141 161 181

number of objects

tim
e

[m
in

]

Figure 2: Measured time required for creating objects
equipment and hardware like ADCs, DACs, DIOs on
Profibus. The source code is GPL licensed and available
for download [1].

The framework is used at four experiments and being
commissioned at a few other experiments. The number of
process variables is up to a few thousand. So far, the
feedback from the experiments is positive.

The first aim, supplying a couple of experiments with a
new control system, is fulfilled. The second aim is to
check the scalability of the approach presented here to
large systems exceeding 100,000 process variables. At
present, this can not be accomplished. Neither the number
of objects per PC nor the number of PCs can be increased
significantly. The limitations are due to the memory
management and the performance of LabVIEW 7.0.
National Instruments has been contacted.

So far, the development of the framework was driven
by DVEE at GSI. The future of the development
presented here depends on its acceptance by and the input
from the experiments as well as on improvements
expected in future versions of LabVIEW.

REFERENCES
[1] http://labview.gsi.de/CS/cs.htm.
[2] R. Jamal and H. Pichlik, LabVIEW Applications and

Solutions, Prentice Hall, 1999.
[3] J. Dilling et al., Hyperfine Interactions 127 (2000)

491-496.
[4] G. Bollen et al., Nucl. Instr. Meth. A 368 (1996) 675.
[5] E.W. Gaul et al., GSI Scientific Report 2002 (2003)

101-103.
[6] S. Schwarz et al., Nucl. Instr. Meth. B 204 (2003)

507-511.
[7] R. Buhrke, LabVIEW Technical Resource, Vol.9, 3.

	CS - A CONTROL SYSTEM FRAMEWORK FOR EXPERIMENTS (NOT ONLY) AT GSI
	INTRODUCTION
	REQUIREMENTS
	SOLUTION
	Object oriented approach and multi-threading
	Event driven communication
	SCADA functionality
	Distribution based on TCP/IP

	THE SHIPTRAP CONTROL SYSTEM
	SCALING TO LARGE SYSTEMS
	CONCLUSION

