
CROSS-PLATFORM AND CROSS-ACCELERATOR MACHINE PHYSICS
PROGRAMS WITH DATABUSH

I. Kriznar, M. Plesko, A. Pucelj, A. Zupanc (JSI and Cosylab), J. Galambos (SNS)
Abstract

Databush, a collection of Java classes and utilities for
machine physics, serves well at the synchrotron light
source ANKA. Machine physics applications with a visu-
ally appealing user interface can be written with Databush
quickly and efficiently and thanks to Java they are cross-
platform. Modular architecture and use of Abeans, a com-
munication and application Java framework, has extended
the usability of Databush even across different control sys-
tems. With improvements and upgrade to latest Abeans
R3 libraries the Databush applications have been tested on
EPICS based control system at SNS. Additional applica-
tions for specific needs of the SNS have been written in
short time. Lattice data was obtained through the XAL
Java library of SNS. Databush applications have kept ro-
bust and appealing user interface, which was polished up
at ANKA in order to be used by operators without back-
ground in physics. We plan to use the same applications
also for the upcoming SESAME light source.

INTRODUCTION

Databush is a Java package with applications, GUI and
calculation tools for writing machine physics applications.
Applications made with Databush, such as OrbitCorrec-
tion, are running at ANKA accelerator. Recently, Databush
package has been adjusted to the new version of Abeans
library, release 3.0. With this improvement Databush ap-
plications are now available for EPICS channels. OrbitDis-
play application was tested at SNS accelerator with their
front-end structure. Databush has two layers of abstraction
of a control system, that makes it able to quickly adopt dif-
ferent kinds of remote or local data sources. With Java,
Databush is automatically runnable at all platforms where
Java Virtual Machine can be run.

DATABUSH

Databush physical model of accelerator structure is opti-
mized for fast calculations of linear optics and delivers re-
sults in structure of machine optics objects. Databush sub-
scribes as data change listener to dynamic value sources,
thus provides a quasi real-time state of a machine. A ma-
chine lattice is organized in hierarchy of collaborating ma-
chine elements (magnets, BPMs, etc.), as seen in UML di-
agram 1. These elements may be tagged as virtual (simu-
lated without external data source) or connected to external
data source via Property interface. Databush structure is
self-contained. An application can make a snapshot of the
machine state, render state in Databush model and apply
changes back to the machine. Since Databush is a Java

package, its applications are platform independent. Plug-in
additions allow fine-tuning of Databush to meet the needs
of a particular implementation.

Control system and communication protocol specifics
are hidden from Databush applications with two levels,
Datatype Properties, and Abeans Plug. Each of these levels
can be replaced with an alternative implementation. Two
major benefits result from this architecture:

• Databush machine physics application can be used
on other accelerators without changing a single line
of code, with appropriate modification of plugs, of
course. This then enables sharing accelerator software
among different accelerators.

• Physicists can concentrate on machine physics prob-
lems. Since all the communication with control sys-
tem is handled by Databush and Abeans, no special
knowledge of the communication protocols and con-
trol system is needed.

In addition to the machine model Databush also has a
toolkit with GUI and calculation components, designed to
be independent or dependent on Databush only in certain
aspects. They can display calculation results or perform
various correction algorithms and similar. Following the
same paradigm as Abeans, Databush also reuses as much
code from other libraries as well as within itself. With mod-
ular structure, it is easy to create new machine physics ap-
plications from existing components or extend existing ap-
plication for new tasks. For example, lattice loading mod-
ules have been made to load lattice from Databush native
file structure, from MAD input file (both notations) or from
XAL hierarchical structure.

Databush at ANKA

Databush was primarily developed for ANKA accelera-
tor. Key emphasis was on fast calculation of linear optics
based model in constant energy situation. From the begin-
ning it was designed with the same spirit as Abeans, to be
extensible and as modular as possible. GUI interface of
Databush application was designed to be understandable
and intuitive for operators, who have no physical back-
ground. For instance, OrbitCorrection application is used
in everyday operation at ANKA by technician in manual or
automatic mode.

The following applications was designed for ANKA and
are used in everyday operation:

• OrbitCorrection is an extensible application frame-
work with modules for various beam optimization
tasks: closed orbit correction, correctors strength re-
duction, dispersion correction, 3/4 corrector bump.

Proceedings of ICALEPCS2003, Gyeongju, Korea

151



• OrbitDisplay shows chart with BPM measurements
and lattice synoptic display.

• MachineFunctionsDisplay shows the results of linear
optics calculation with one second update rate on the
chart with lattice synoptic display.

• MachineFunctionsManipulator is similar to Machine-
FunctionsDisplay with slider controls for lattice pa-
rameter manipulation. Machine model is updated
from the machine on demand and calculation result
(power supply currents) can be set back to the ma-
chine on demand as well.

Databush and XAL at SNS

The Spallation Neutron Source (SNS) is an accelerator-
based neutron source being built in Oak Ridge, Tennessee,
by the U.S. Department of Energy. The SNS will provide
the most intense pulsed neutron beams in the world for sci-
entific research and industrial development. The SNSs ma-
chine consists of front-end system which produces a pulsed
beam of negative hydrogen (H-) ions at energy 2.5MeV , a
large linear accelerator with normal conducting and super-
conducting radio-frequency cavities, which accelerates the
H- beam up to 1GeV , an accumulator ring structure and
target area with experimental lines.

SNS is using a Java based framework for accelerator
physics programming interface for the accelerator, called
XAL [2]. XAL provides Java wrapper for underlying con-
nection to the EPICS control system. An on-line model
is included in this framework for quick beam tracking. On-
line model uses powerful and flexible calculation model for
calculation of machine physics parameters which includes
important higher level effect on proton beam in complex
SNS accelerator.

At SNS, OrbitDisplay Databush application is running
with Abeans EPICS plug. A bump application has also
been made and will be tested when enough of the linac
transfer line will be operational. Databush application
at SNS will gradually be transfered to XAL framework.
Databush has a fast and lightweight linear optics machine
model and will be replaced with XAL’s on-line model,
which presents far better fit for the complex accelerator
structure at SNS. GUI features, tools and physical algo-
rithms from Databush will help make XAL a better ma-
chine physics package.

ABEANS

The Abeans contains a wide range of Java tools which
cover communication modelling, applications framework,
GUI widgets, services, resource handling and more.
Abeans library is reused and improved with each new Java
project Cosylab deploys [1]. It was natural for Databush to
use as many features from the Abeans toolbox as possible,
when it was transfered to the new Abeans release.

Figure 1: UML diagram of Databush element hierarchy.

Firstly, Databush uses Abeans as data access library to
connect to remote data sources. Abeans provide the build-
ing blocks for constructing an object-oriented (OO) repre-
sentation of a complex control system. Such representa-
tions are called Models. For example, Channel model is an
OO representation of a flat control system, such as EPICS
or TINE. In Channel model, a whole control system can
be seen as an assemble of Channels- single sources of dy-
namic remote values. Implementation of a particular com-
munications protocol is in Abeans called a Plug. Plug is
an OO interpretation of a narrow interface. Model maps all
remote operations to plug Plug as Request, for which the
Plug returns Response with result of remote operation (fig-
ure 2. With this powerful approach, one model can use sev-

Proceedings of ICALEPCS2003, Gyeongju, Korea

152



eral Plugs (communication protocols) at the same time, or
one plug can serve as communication component for sev-
eral different models. Databush uses Channel model for
access to EPICS channels to read magnetic fields and BPM
measurements.

Databush also uses Abeans for the following tasks: er-
ror reporting, logging, resource loading end configuration
management. These features are implemented as shared
services in Abeans and are implemented once and for all.

Figure 2: Abeans component diagram.

Datatypes

The Datatypes library defines a set of interfaces and ab-
stract classes that provide a consistent and extensible mech-
anism for access to dynamic data sources ([3] and [1]). A
dynamic value is a value obtained from a data source, either
local or remote, that has a unique name in the namespace
of all dynamic values accessible to a Java application. Dy-
namic value has a well-defined type, its value can change
through time and interested parties may be informed about
the change. Dynamic value is described by a static con-
text, consisting of a number of characteristics. The dy-
namic value can be cast into different Java types. Prop-
erty incorporates concepts as characteristic, subscription
(to notifications about the change in the dynamic value, the
quality of the dynamic value, the status of the subscrip-
tion itself) and data access (a rendering of the dynamic
value into a specific Java type). Figure 3 shows UML di-
agram of property describing double dynamic data source
as DoubleAbstractProperty.

The Datatypes library can be used as a set of stand-alone
interfaces, because it does not depend on other Abeans li-
braries and is defined purely as a set of interfaces or ab-
stract classes. Databush uses datatypes as the second level
of data-flow abstraction. For Databush, Channel model
with EPICS plug is just one of implementation of dynamic
data access. Databush uses a dummy implementation of
Datatypes interfaces for simulation purposes.

EPICS Plug

Implementation of EPICS communication protocol as
Abeans Plug enables object-oriented access to EPICS
channels. At the moment, Channel library is used as a fa-
cade to this plug, however any other type of model, such
as Device/Property paradigm oriented, could be provided.
With future development of Abeans also model based on

Figure 3: UML diagram of double Property, part of
Datatypes framework in Abeans.

Device/Property paradigm will use same plug for commu-
nication with EPICS. This will allow to model the flat hi-
erarchy of EPICS as a set of hierarchically organized de-
vices with properties and thus present EPICS as a fully ob-
ject driven structure for Java programming. EPICS plug
was developed for SNS project and used in ObjectExplorer
generic channel browser application.

CONCLUSION

Databush machine physics application has proven to be
useful and user friendly for ANKA operators. And they
were fun to work with. In combination with Abeans and
latest improvements, Databush is truly becoming cross
platform and cross accelerator bunch of machine physics
libraries and applications. With ongoing effort, experience
and code accumulated with Databush will be used at two
currently largest accelerator projects, SNS and Diamond.

REFERENCES

[1] http://www.cosylab.com

[2] http://www.sns.gov/APGroup/appProg/xal/xal.htm

[3] I. Verstovsek et al, “The New Abeans and CosyBeans: Cut-
ting Edge Application and User Interface Framework”, PCa-
PAC’02, Frascati, October 2002

[4] I. Kriznar and M. Plesko, “DataBush: Machine Physics Pro-
gramming Package in Java”, PCaPAC’00, Hamburg, October
2000

[5] M. Plesko et al. “The Object Oriented Approach to Con-
trol Applications and Machine Physics Calculations with Java
Technology”, ICALEPCS’01, San Jose, October 2001

Proceedings of ICALEPCS2003, Gyeongju, Korea

153


