
ALMA SOFTWARE DEVELOPMENT APPROACH
G. Raffi , European Southern Observatory (ESO), Munich, Germany

B.E.Glendenning � National Radio Astronomy Observatory (NRAO), Socorro, NM, USA

Abstract
The Atacama Large Millimeter Array (ALMA) is a

joint project involving astronomical organizations in
Europe and North America. The primary challenge to the
development of the software is the fact that its
development team is extremely distributed
geographically. In addition it has very ambitious goals
covering the whole end-to-end software system.

The software development approach, based also on the
experience of previous large projects is very pragmatic
and contains elements of various methodologies, from the
classical top-down model, to early prototyping,
incremental development, and even aspects inspired to
agile methodologies.

INTRODUCTION
The Atacama Large Millimeter Array (ALMA) is a joint
project involving astronomical organizations in Europe
and North America. ALMA will consist of at least 64 12-
meter antennas operating in the millimeter and sub-
millimeter range. It will be located at an altitude of about
5000 m in the Chilean Atacama desert (see Ref. [1]).

Fig.1 shows the ALMA centres located in Chile: the
Antenna Operation Site (AOS) where the antennas are
located, the Operation Support Facility (OSF) in San
Pedro and the Santiago Operation Centre (SOC).

The peak data rate between AOS and OSF is 60 MB/s
(distance 35 Km), while the sustained average data rate
on the link OSF/SOC will be 4 MB/s.

PROJECT MANAGEMENT APPROACH
The ALMA Computing group is subdivided in teams

located at 11 institutes around Europe and North America
and consists of almost 50 people, many of them working
on ALMA only part time. These have started the
development of the various subsystems, namely: Proposal
Preparation tools, Instrument operation, On-line
calibration and reduction, and Archiving in addition to the
Control and Correlator software subsystems, started some
time ago. All of them are based on the ALMA Common
Software (ACS � separate presentation and demo at this
Conference) providing a mandatory and useful
framework, which while avoiding duplications is well
tested and offers common design patterns important also
for later maintenance.

The work is split among 10 subsystems, with a number
of common activities on top (most notably architecture,
software engineering, and integration & test)

Reasons for Development Framework
The scientific requirements for the whole system were

defined in great detail, complemented by Use Cases, and

Figure 1: ALMA Sites in Chile

then analyzed arriving at a proposed architectural design
(classical top-down approach). This we considered as a
necessary step to get started, but by far not good enough
to continue for long time in the future without
verification. Therefore the iterative development model
was also considered from the beginning.

Additionally development of science software, where
feedback from the early operations phase is essential, has
been planned to be done in two separate periods,
essentially upgrading the whole software over a period of
4 years.

AOS

OSF

SOC

Proceedings of ICALEPCS2003, Gyeongju, Korea

49

In parallel software was developed to satisfy the needs
of the first antenna prototypes to be evaluated (bottom-up
work). However even for this early work separate teams
provided the framework (ACS) and the control system on
top respectively. This approach was hard to get started but
is now fully understood and accepted and has become the
conceptual basis for the whole ALMA development.

Figure 2: ALMA Software Architecture

The resulting architecture (see Fig.2) was then extended
to include Container-Component concepts, resting on a
communication layer based on CORBA and making
extensive use of standard ORB services. This enforces the
concept of separation of concerns between the domain
specific features of subsystems and the technical features
related to communication and housekeeping, which are
delegated to ACS to be solved in a common way for all
subsystems (see Ref. [2], [3], [4]).

Formal vs. Informal Design
While teams corresponding to subsystems could in

principle work autonomously, we believe that it is
essential to achieve a coherent global design and to make
sure that this will hold in time. To obtain this we held a
few extended face-to-face meetings to discuss the
architecture and interfaces with subsystem leaders, cross
checking with them the features required from ACS. This
avoided too much paperwork in the early discussion
phases with people rather carrying away simple notes and
ideas. The final result for the preliminary design review
was then formalized in Design, Interface Control and Plan
documents (one each per subsystem). All this would have
not been possible without the preliminary meetings

among key designers. The various development teams are
now free to use any methodology they find suitable to
develop their software or even no methodology, provided
they comply with the interfaces, overall architecture, and
periodic milestones concerning software releases. At 6
months from PDR and after the first incremental critical
design review, we assume to have in place already most
of the paper work necessary. Obviously design details
will be needed for the reviews and maintenance
documentation, but in general paper is clearly not the goal
and we will try to limit it to the minimum.

We rather intend to have periodically informal design
meetings among key designers.

Iterative Development
The iterative development based on incremental design

reviews (one per year) and synchronized releases (every 6
months) will allow monitoring of the development
process. We intend to take advantage of this cyclic
process to further detail requirements and steer the whole
process, by involving users in the development process to
avoid requirements developed earlier from quickly
becoming obsolete.

In particular a scientist is assigned to every
development team to provide advice, make sure
requirements are met and possibly redefine their priority.
Additionally he has an essential part in the testing
process, as explained better below.

Software development sees shorter cycles with builds
being produced automatically and daily from the central
software repository and monthly tagged all-software
integrations for checking interface integrity and reporting
anomalies to the different subsystems (much before these
become an integration problems at the 6-monthly release).

Milestones
An interesting aspect for control software developers is
the fact that software releases are detached from hardware
milestones, so that control software does not entirely
depend on hardware deliverables and its possible delays
(even if obviously final testing and commissioning needs
hardware availability). The emphasis is on meeting
milestones and developing first the global aspects that are
needed for the integration work.

Testing strategy
The goal for testing is to use 20% of the development

time for modular and subsystem tests that will be based
on commercial and open-source unit test tools. All these
tests will then be embedded in an automatic test tool
called TAT (that exists already) and delivered to a
separate Integration team for automated regression testing
(Fig. 3).

Different kind of tests are performed. Unit tests, which
verify the functionality of single programming units, are
fully automated and performed with the help of JUnit,
pyUnit or cppUnit respectively, depending on the
development language, with a home made tool (TAT)

Observation
Preparation

Scheduling

Data Reduction
Pipeline

A
r
c
h
i
v
e

Executive

ALMA Common Software

Principal
Investigator

1. Create observing project

2. Store observing
project

3. Get project
definition

4. Dispatch scheduling block id

6. Start data reduction

8. Notify PI

7.1. Get raw data & meta-data
7.2. Store science results

9. Get project
data

Archive
Researcher

Telescope
Operator

f. Get science data

d. Notify
of

Special
Condition

e. Start
Stop

Configure

c. Alter Schedule / Override action

Control System

Correlator

Calibration Pipeline

Quick Look Pipeline

5. Execute scheduling block

5.2 Setup correlator

5.3. Store
raw data

5.4. Store
meta-data

5.6. Store calibration results

5.7. Store quick-look results

Primary functional paths Additional functions ALMA software subsystem external agent

Real-time

a. Monitor
points

b. Monitor
points

5.5b. Access raw data & meta-data

h. Store admin data

g. breakpoint
response

5.5a. Access raw data & meta-data

5.1. Get SB

Proceedings of ICALEPCS2003, Gyeongju, Korea

50

being used for the automatic integration tests (see Ref.
[4]).

Performance test, stand alone tests and integrated user
tests are meant to be added and do exist only very
partially at this stage.

However there is a precise effort being made to prepare
user end tests, based on user test cases. The goal here is to
audit the implementation of requirements and update this
after each test and before releases.

CONCLUSION
The ALMA Computing group experience shows so far

shows that in spite of theories teaching that software
development should be co-located and better developed in
small groups, things start to move forward and the release
cycle milestones are maintained.

However this is not without a big communication effort
and conversely accepting quite some inefficiency.

The well understood need for periodic face to face
meetings, which are expensive, is an inevitable tribute to
pay to the extreme distribution of the project.

The compensation mechanism for this is that we have a
much wider area of expertise and together a much better
overview and capability to come up with the right idea
and solution. This is what we see every time in face to
face meetings. We notice also that while certain areas
need a formal approach, like interfaces between software
subsystems designed by different teams, a much more
agile approach and even different methodologies can be
applied in different teams. Our approach here is that as
long as release milestones are met and the Integration
team can integrate subsystems, we do not wish to
prescribe how design and implementation have to be
done.

ACKNOWLEDMENTS
The work reported here is the result of the effort of a

group of almost 50 people scattered around Institutes
located in Europe and North America.

We wish to acknowledge explicitly their enthusiasm
and dedication, which in spite of the difficulties
connected to their distance is keeping the ALMA
software so far on schedule.

Figure 3: The integration and test cycle

REFERENCES
[1] ALMA Web page under:

http://www.alma.nrao.edu/development/computing
[2] ACS Web Page,

http://www.eso.org/projects/alma/develop/acs
[3] G. Chiozzi et al., �The ALMA Common Software

(ACS):Status and Developments�, ICALEPCS 2003,
Gyeongju, October 2003

[4] G. Chiozzi et al., �Common Software for the ALMA
Project�, ICALEPCS 2001, San Jose, 2001

[5] Alma Software Engineering pages:
http://www.eso.org/projects/alma/develop/alma-
se/reference/IntegrationTools.html

Compiled
Test DIR

Makefile

Make all

test target

make test

test output

UNDETERMINED

FAILED PASSED

UNDETERMINED

TAT

TAT

Proceedings of ICALEPCS2003, Gyeongju, Korea

51

