
FIRST EXPERIENCES WITH A CENTRAL ERROR SERVER USING WEB 
SERVICES 

E. Sombrowski, O.Hensler, R.Kammering, K.Rehlich DESY 22607 Hamburg, Germany 
A. Petrosyan YerPhI, Armenia 

Abstract 
As the DOOCS control systems, operating the TESLA 

Test Facility (TTF) at DESY, is a widely distributed 
system, for TTF phase 2 approximately 50 front-end- and 
middle-layer computer with 5 to 10 server processes on 
each processor are planed. A system with local log files is 
not sufficient anymore. In addition to the local files a 
central logging of all error and warnings will be 
implemented. 

The architecture consist of a central logging server that 
receives the log messages in XML format. It is based on a 
DOOCS server written in C++, using the XML2 library 
for parsing the XML messages. All message are combined 
inside a DOM tree. This tree reflects the actual status of 
all devices in the system. On the client side the server 
represents a Web Service. Client requests from Java 
applets or Web browsers are handled via a servlet / 
Tomcat service. In order to provide a fast online update 
Java Messaging Service JMS will be used to send single 
messages to the clients. To allow a logging per device, 
every message is stored inside a directory tree. On the 
front-end this error handling is a fully integral part of the 
DOOCS server library, so no additional programming 
effort is required. 

A Java applet will allow the operator to get an overview 
of the machine status, as well as allowing remote experts 
to get information of single devices by browsing through 
a tree like structure closely connected to the TTF 
nomenclature. First experiences with this implementation 
will be discussed. 

MOTIVATION 
The first motivation for this project is to improve the 

system of local log files for every device server and 
extend it with a concept of a central alarm and info server. 
In our terms alarm are messages automatically generated 
by the front-end servers, a class D_error is provided with 
every location holding information like error number, 
error message or severity. Whereas info’s are messages 
typed in by an operator or expert to better explain a 
behaviour of a device, again a property per location is 
derived from the base class and held on the device server. 
It is called DEVICE.INFO, is of type D_ustr and 
containing basically a severity number, a time stamp and 
a 80 character string. These two types of information 
should now be combined on a central alarm and info 
server. An other idea is to provide the users the choice of 
combining the logs to their needs, starting from the logs 
of the complete facility, looking on one device type or 
analysing just one particular location.  

A further motivation is to learn programming in the 
concepts of Web Services and extend the DOOCS[1] 
environment towards the Web. 

REQUIREMENTS 
DOOCS Front-end server 

A lot of the CPU’s that will be used in TTF2 are still be 
old computer with memory between 32 and 96 Mbyte. 
For these CPU’s a programming language that requires 
much memory is not acceptable. For this reason, the 
front-end part will be implemented in C++ into our 
standard DOOCS server library. 

Alarm and Info Server 
The central alarm and info server will run on a state of 

the art hardware, so any restrictions about memory or disk 
space are no concern. For TTF2 the alarm server needs to 
keep the actual errors and info strings of up to 150 front-
end and middle layer servers with 2 to 200 locations. This 
leads to approximately 50000 XML nodes in one central 
DOM tree. This server has to receive calls from DOOCS 
servers, but other system interfaces may be required at 
TTF2. In the case of TINE and EPICS an integration will 
be simple, because this protocol is already an integral part 
of the DOOCS client library. For other system a simple 
socket library could eventually be provided. 

Servlets 
There are different servlets needed for transferring the 

whole DOM tree, sending the actual messages via Java 
Messaging Service JMS to the active displays and to 
combine the history XML files for the display. These 
servlets will work in the Tomcat[4] environment. 

Display 
The display should run on a wide range of computers 

so a Java program is the obvious choice. The start-up of 
the display should not take longer then 10 second and 
actual messages should reach the display in less then a 
second. Browsing through the devices in a hierarchical 
tree should be possible, on every node the status of the 
subtree should be visible.[5] An acknowledgement of an 
error on the front-end should be possible. 

A standard Web browser can also be used to start the 
Java program with WebStart. 

TEST OF XML DATABASES 
The first idea was to store the XML data into a XML 

database instead of creating a directory structure in a 
filesystem and then storing every message into a separate 
file. The hope was, that this database will support us in 
combining all the different XML messages and providing 
a simple search and query solution. For this reason an 
XML test file with around 160000 XML nodes were 
created to test the performance of the following 
databases: 

Proceedings of ICALEPCS2003, Gyeongju, Korea

606



Front-end message • XIndice , an Apache project written in JAVA, but 
good for small XML data sets (<50KBytes) only. 
The searching speed is very slow. 

The XML string shows an example of a message 
between a front-end process and the alarm server. 

• EXist , a SourceForge project, is similar to Xindice, 
base on the same architecture, written in JAVA 
aswell, but has problems in Xpath calls. Because of 
this no real performance test was possible. 

<?xml version="1.0" encoding="ISO-8859-1" ?> 
<list> 
 <isodate>2003-08-14T13:33:18</isodate> 
 <calltype>run</calltype> 

• Infonyte, a commercial database for XML 
documents up to 1TByte, much faster, but still too 
slow. A search request needs about 7 second to 
answer. The price is ~5000 Euro and seems to be 
acceptable. 

 <version>1.0</version> 
 <fac name="TTF2.VAC"> 
  <dev name="ION_PUMP"> 
   <loc name="1ACC6"> 
 <prop name="ERROR"  
  value="can&apos;t switch, itemp: 0x28, iHV: 0x0" 
 severity="ERROR" mask="0"  
 time="2003-08-14T13:33:17"
 user="server" host="vmevac2/> 

• Tamino, an other commercial database from 
Software AG, written in ‘C’ language. This database 
seems to be fast enough, but is very complex. The 
complete XML structure is locked during an update 
of one node.  
Unfortunately the price is with 40000 US$ / CPU 
very high. 

   </loc> 
  </dev> 
 </fac> 
</list> 

 

Alarm and Info server • libxml2 is an XML library used for the internal 
communication in the GNOME project. It is a very 
fast, comprehensive “C” implementation to manage a 
DOM tree in memory and to parse XML files. It is an 
Open Source project and available for different 
platforms. 

The error server side is divided into two processes : 
A standard DOOCS server will be used to build up the 
DOM structure of all error and info messages in its 
memory using the XML library libxml2[2] from the 
GNOME[3] project. This library is written in “C” and 
tests proved it as a very fast implementation. This library 
provides many functions, but cause programming with it 
is not so easy, a C++ wrapper library called xmlwrapp is 
used.[7]  

CONCEPT 

The server receives the error message from the front-
ends as an XML string. This string is parsed to find the 
tags <fac>, <dev>, <loc> and <prop>, which corresponds 
directly to the DOOCS nomenclature 
FACILITY/DEVICE/LOCATION/PROPERTY. These 
information are used for some simple tests and then 
inserted into the main DOM structure. Further they are 
used to create the directory structure and to store the 
XML message into a files. The directory structure 
corresponds directly with the nomenclature of the control 
system. For every location one directory is created and 
then all incoming XML files of that particular device will 
be stored inside. This builds up a kind of logging history 
for every device. Figure 1 For every error message one thread will be created to 
do the processing of the data. This error-server will build 
up a list of active front-end servers in order to check them 
from time to time or to start a initial run at start-up time of 
the error-server. This error server can be configured by a 
property to accept only logs from a certain facility, e.g. 
TTF2 or HERA to avoid logs from test systems. 

DOOCS Front-end server 
In order to keep the proved concept of DOOCS, on the 

front-end server no additional protocols will be added. A 
new data function class called D_xml is created to hold 
the XML string. This string can then be send by a usual 
DOOCS RPC call to any client. 

The D_error will be extended with a D_xml type for 
creating an XML error message. When an error changes, 
this XML string is send to the error server. To do this call 
a thread is created in order to avoid interference with the 
standard server operation. In case of transfer failure, the 
server needs to store the message to retry later.  

Java Servlets 
A Java servlet will be used to transfer the main XML 

structure to the display applet or to a standard Web 
browser using the Tomcat[4] Web service engine from 
the Apache project. The communication with the error 
server will be done with the Unix InterProcessCommuni-
cation IPC. For this purpose the servlet is using the Java-
NativeInterface JNI. 

Proceedings of ICALEPCS2003, Gyeongju, Korea

607



Display 
The display for the operator will be a Java program as 

shown in Figure 2. On the left side, the operator sees the 
device tree structure that allows to browse through all 
devices of the Linac. By selecting a node one gets the 
history entries of some devices or just a single location. 
On the top, one has a ticker like window showing the 
most recent messages from the complete accelerator.  

Figure 2 

From this Java program interaction with the control 
system like acknowledging of errors will be done by the 
use of the jDOOCS[6] Java library. 

WHAT HAPPENS WHEN? 
The error server starts up 

When the alarm server starts up, it reads the main DOM 
tree, by parsing the regular stored XML file. A list of 
active front-end servers is created, then the alarm server 
asks the frond-end server via an RPC call to send all 
information of all locations. This synchronises the main 
DOM structure of the alarm server. 

A DOOCS device server starts up 
When a front-end server starts up, it sends all the error 

and info information from every location to the error 
server. This is the same data the error server can ask for 
via the RPC-call. This call  

Testing for online front-end server 
The alarm server needs to test from time to time, 

whether a front-end server is still alive or not. It will be 
done by a similar RPC call like the watchdog. In a case 
of failure, the complete tree of locations will be marked as 
error. 

A location is added 
A new location of a device can only be added during 

server start-up. In this stage the front-end server sends all 
information and the new device is added automatically. 

A location is deleted 
If one or more devices are missing after a front-end 

server start-up, they will be marked as “gone” in the tree. 
We have to decide whether we need a user interaction to 
delete the device on the error server or the error server 
checks for this device on the front-end server and 
eventually delete it automatically. Eventually this could 
be done after a certain time period of some days. 

A location is renamed 
We have the situation, that some devices have a 

location name (were they are at the moment) and an alias 
name (when the device is offline). This will lead to two 
entries in the directory tree, but this is no problem as long 
as the front-end server sends a message with the new 
location name. 

CONCLUSION 
The complete project is now ready and is in the phase 

to be released to the user and operator. Still some testing 
needs to be done and the feedback from the user have to 
be included. Unfortunately a more easy implementation 
with the help of an XML database turned out to be not 
feasible, cause these databases are too slow. A good tool 
seems to be the XML library from the GNOME project, 
since it is very fast and offers all needed functionality. It 
has be used for the implementation of main parts of the 
alarm and info server in conjunction with the C++ 
xmlwrapp library. 

REFERENCES 
[1] http://doocs.desy.de 
[2] http://www.xmlsoft.org 
[3] http://www.gnome.org 
[4] http://jakarta.apache.org/tomcat 
[5] General State and Alarm Monitoring System for 

ConSys, Torben Worm PCaPAC 2000 
[6] jDOOCS – a Java Library for DOOCS 

V.Kocharyan YerPhI, Armenia 
[7] http://xmlwrapp.org 
 

 

Proceedings of ICALEPCS2003, Gyeongju, Korea

608

http://jakarta.apache.org/tomcat

	FIRST EXPERIENCES WITH A CENTRAL ERROR SERVER USING WEB SERVICES
	MOTIVATION
	REQUIREMENTS
	DOOCS Front-end server
	Alarm and Info Server
	Servlets
	Display

	TEST OF XML DATABASES
	CONCEPT
	DOOCS Front-end server
	Front-end message
	</list>
	Alarm and Info server
	Java Servlets
	Display

	WHAT HAPPENS WHEN?
	The error server starts up
	A DOOCS device server starts up
	Testing for online front-end server
	A location is added
	A location is deleted
	A location is renamed

	CONCLUSION
	REFERENCES


