
TUCT005

THE CONTROL ARCHITECTURE OF THE DØ EXPERIMENT

J. Frederick Bartlett, Stanislaw Krzywdzinski, Geoffrey Savage, Vladimir I. Sirotenko, Dehong Zhang,
FNAL, Batavia, IL60510, USA

Abstract

From a controls viewpoint, contemporary high energy
physics collider detectors are comparable in complexity
to small to medium size accelerators: however, their
controls requirements often differ significantly. D0, one
of two collider experiments at Fermilab, has recently
started a second, extended running period that will
continue for the next five years. EPICS [1], an integrated
set of software building blocks for implementing a
distributed control system, has been adapted to satisfy the
slow controls needs of the D0 detector by (1) extending
the support for new device types and an additional field
bus, (2) by the addition of a global event reporting
system that augments the existing EPICS alarm support,
and (3) by the addition of a centralized database with
supporting tools for defining the configuration of the
control system. This paper discusses the control
architecture of the current D0 experiment, how the
EPICS system was extended to meet the control
requirements of a large, high-energy physics detector,
and how a formal control system contributes to the
management of detector operations.

1 THE EXPERIMENT
DØ is a high-energy physics experiment located at one

of the two collision points of the 1 TeV proton/anti-
proton beam of the Fermilab accelerator. The detector is
constructed from multiple layers of sensors: (1) a
precision inner tracking section consisting of silicon
microstrip cylinders and disks, (2) eight cylinders of
longitudinal and stereo scintillating fibers, (3) a super-
conducting solenoid providing a magnetic field for the
inner tracking layers, (4) an electromagnetic preshower
section, (5) a liquid argon calorimeter, and (6) an outer
muon spectrometer. The experiment has just commenced
its second, extended running period that is expected to
last until 2007.

2 EPICS AND ITS EXTENSIONS
Following the first running period, which ended in

1995, the computing policy of the laboratory decreed that
future experiment software must be developed from
platform-independent components. Since the DØ control
group was small and the period before the beginning of
the next running period was short, recasting the existing

slow-controls system in the new formalism was not
practical.

After a brief survey of the field, we selected EPICS
(Experimental Physics and Industrial Control System) [1]
to provide the building blocks for our new controls effort.
The principal reasons for selecting EPICS were (1) the
availability of device interfaces that matched or were
similar to our hardware, (2) the ease with which the
system could be extended to include our experiment-
specific devices, and (3) the existence of a large and
enthusiastic user community that understood our
problems and were willing to offer advice and guidance.

One of the unique properties of the DØ detector
interface is the use of the MIL/STD1553B serial bus for
all control and monitoring operations with the detector
and with the electronics components located in the
remote collision hall. Since the detector is inaccessible
for extended periods of time, a robust, high-reliability
communication field bus is essential. We extended
EPICS by providing a queuing driver for
MIL/SRD1553B controllers and a set of device support
routines that provided the adaptive interface between the
driver and the standard EPICS process variable (PV)
support records. Once these elements were in place, all of
the features of EPICS were available for use with our
remote devices.

High voltage channel control is an example of
extending the basic PV record support. In this case,
building a compound device from individual PV records
was not feasible because of the complexity of the HV
device and the speed requirements. A generic high-
voltage record support module was developed based
upon the extended, Harel state machine model [2]. The
record support module provides the required, high-level
behavior with (1) linear ramping with retries, (2) trip
condition recovery, and (3) limits control. Device support
modules then adapt the HV record to specific HV
devices. Although developed for a specific device, the
record support is non-device specific and may be used
for other types of voltage generators that require a similar
behavior.

Using the EPICS portable channel access server, we
have constructed gateways to two other control systems:
(1) the SCADA-based DMACS system that manages the
DØ cryogenic and gas systems and (2) the accelerator
ACNET control system. These links are used for
exchange of information only.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

47

3 GLOBAL EVENT REPORTING
Although the EPICS system provides an operator

alarm display, alarms from slow controls are not the
only, nor, necessarily, the most important events. To
address this problem we have developed a separate
facility, the Significant Event System (SES) [3], to
collect and distribute all changes of state of the detector
and the data acquisition system.

Unlike the EPICS alarm facility, in which the operator
display explicitly connects to each PV, the SES has a
central server that collects event messages from sender
clients and filters them for receiving clients. Each EPICS
IOC connects to the server via a TCP/IP link and all state
changes on that IOC, including alarm transitions, are sent
to the server. For large physics detectors with hundreds
of thousands of PVs, the savings in connect time at
startup can be significant.

The alarm class of SES messages receives special
handling in the server. The SES server maintains the
current alarm state of the entire detector so that receiving
clients are able to obtain the current state when they first
connect to the server.

In addition to specialized receiving clients that may
connect to the server, there are two standard clients: the
SES logger and the operator display GUI. The logger has
a pass-all filter and writes all messages to a disk file.

In addition its monitoring and logging functions, the
SES system provides the means for distributing
synchronizing messages to other components of the
online software system. For example, global control of
the high-voltage system is accomplished by having the
individual detector high-voltage programs connect to the
SES server for messages that signal changes in the run
state of the data acquisition system.

The SES server and most of the receiving clients have
been coded in the Python scripting language, while many
of the sending clients are coded in C or C++. We
anticipate that, for efficiency considerations, the server
may require recoding in C++ at some later stage in the
development cycle. API’s for SES clients are available in
all three languages.

4 CENTRALIZED DEVICE DATABASE
The EPICS databases that configure the individual

Input/Output Controllers (IOC) are flat, ASCII files that
are read by the IOC’s during startup. The EPICS system
additionally provides a higher-level construct, called a
template, which is a parameterized collection of record
definitions. Generator files, which reference the
templates, supply the parameter values to produce
instances of these templated devices. While these
collections of files are adequate for EPICS initialization,
they are not easily accessible to host-level processes that
may require the same information.

To address this problem, the DØ experiment
centralized the relevant device information in a relational
database (Oracle) [4] and provided a family of scripts,
written in the Python language, to manage the
transformation between the relational database and the
EPICS, ASCII-format files.

By providing scripts for bi-directional conversions, it
is possible to edit collections of devices (instances of
templated devices) by extracting the parameterized
devices to a generator file, modifying the generator file
with a text editor, and re-inserting the generator file into
the relational database. For large collections of devices,
this three-stage process is often simpler and faster than
using a database editor directly.

In addition to the database management scripts, a
WWW browser interface to the relational database is
available for initial definition and modification of the
relational database entries.

With control system device specifications now
centralized in the relational database, they are easily
accessible to other host-level processes. This, in turn, has
led to a series of extensions to the original database
schema to support the needs of other, controls-related
processes. An example is the SES operator alarm display
that accesses the central device database for obtaining
guidance text and action scripts related to specific EPICS
devices.

5 DETECTOR CONFIGURATION
MANAGEMENT

One of the most complex tasks performed by the
control system is the configuration of the detector for
specific run conditions. The set of distinct configurations,
both for normal, data-taking and for calibration runs, is
very large; and, so, the usual technique of uploading a
specific detector configuration, once the required
conditions are established, and saving it as a file for
subsequent downloading is impractical.

For purposes of configuring the detector, it is
structured as a tree with nodes at successively deeper
levels corresponding to smaller, more specialized
organizational units of the detector. The terminal nodes
of the tree are, in nearly all cases, single instances of the
high-level (templated) devices discussed in the preceding
database section. The intermediate nodes of the tree
primarily serve to organize the traversal order of the
subordinate nodes since the detector is, in general,
sensitive to the order in which devices are initialized. The
terminal nodes, called action nodes, manage the
configuration of a specific, high-level device.

One level of intermediate node, the geographical
sector, has a particular significance. These nodes, in most
cases, represent the individual read-out crates of the data-
acquisition system and are the lowest level in the tree
hierarchy in which the nodes are guaranteed to be

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

48

functionally independent. The load function for these
nodes may be executed in parallel, significantly reducing
the total time required to configure the detector.

A single program, COMICS [5], coded in the Python
language, manages configuration of the EPICS-
accessible part of the detector. The tree nodes, both
intermediate and action, are specialized instances of a
base node class, which defines most of the methods that
characterize node behavior. The detector tree structure is
defined by a set of configuration files that are Python
program segments which instantiate instances of nodes.

6 CONCLUSIONS
Faced with the task of completely rebuilding the slow-

controls system of a complex, high-energy physics
detector in a limited time, the DØ collaboration selected
the EPICS system to provide the component parts from
which the system would be constructed. EPICS, itself,
has been extended to support a new field bus, and
numerous experiment-specific devices. Our experience
with EPICS in building the control system has been an
overwhelmingly positive one, although, as with many
distributed development projects, we found that the user
documentation was often incomplete.

By providing the Python scripting language with an
interface to the EPICS channel access API, members of

the DØ collaboration have been able to write nearly all of
the operator interfaces to the experiment in a high-level,
object-oriented language. Because Python is
fundamentally object oriented and provides a number of
high-level language constructs and because programs
written in scripting languages tend to be significantly
easier to debug, the development time for building the
DØ online system was significantly reduced compared
with what would have been required had the C++
language been used instead.

REFERENCES
[1] L. Dalesio et al., 'The Experimental Physics and

Industrial Control System Architecture: Past,
Present, and Future', Proc. ICALEPCS, Berlin,
Germany, 1993, pp 179-184

[2] D. Harel, ‘Statecharts: A Visual Formalism for
Complex Systems’, Science of Computer
Programming’, 8 (1987) 231-274

[3] G. Savage, ‘Significant Event System Tutorial’,
Internal DØ document

[4] S. Krzywdzinski, ‘EPICS Oracle Database Tutorial’,
Internal DØ document

[5] J. F. Bartlett, ‘COMICS: DØ Detector Download
Tutorial, Internal DØ document

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

49

