First Observation of Quasi-Monochromatic Optical Cherenkov Radiation in a Dispersive Medium (Quartz)

A. Potylitsyn¹, G. Kube¹, A. Novokshonov¹, A. Vukolov, S. Gogolev, B. Alexeev, P. Klag², W. Lauth²

- ¹ Deutsches Elektronen Synchrotron (DESY)
- ² Institute of Nuclear Physics, Johannes Gutenberg University.

1 Introduction (Motivation)

- **2** Theoretical Model (Polarization Currents Approach)
- **3 Experimental Setup**
- 4 Results
- 5 Summary

A. Potytltsyn, G. Kube, A. Novokshonov et al, *"First Observation of Quasi-Monochromatic Optical Cherenkov Radiation in a Dispersive Medium (Quartz)"*, Phys. Lett. A, Vol. 417

Introduction

- 1 Discovered by P. Cherenkov (1934) and described by I. Tamm and I. Frank (1937)
- 2 Cherenkov Radiation (ChR) is widely used in different fields:
 - elementary particle physics
 - as an intense source of EM radiation
 - beam diagnostics (loss monitors, length measurements)

L. Bobb, R. Kieffer, T. Lefevre, S. Mazzoni, T. Aumeyr, P. Karataev, M. Billing, J. Conway, and J. Shanks, Phys. Rev. Accel. Beams 21, 032801 – Published 5 March 2018

- **3** The applications are based on its directivity:
- 4 There is a threshold: $\beta n(\lambda) > 1$

Introduction (Motivation)

• Cherenkov Radiation is not widely used in the beam profile diagnostics

- Although it could possibly be a substitute to such standard techniques as the scintillating screens and the optical transition radiation (OTR)
- A thin ChR radiator (crystal plate) has to be used
- Consequently such parameters as a point-spread-function (PSF) and a spectrum have to be studied

Introduction

$$\theta_{vac} = \psi + \theta = \psi + \arcsin \{n(\lambda) \sin(\theta_{ch} - \psi)\}$$

$$\theta_{vac} = \psi + \arcsin\left\{n(\lambda) \sin\left[\arccos\left(\frac{1}{\beta n(\lambda)}\right) - \psi\right]\right\}$$

- The outgoing angle depends on the wavelength, the particle energy and the crystal tilt
- Rotating the crystal one can obtain separate spectral lines from the whole ChR spectrum

- ChR from a dielectric plate with infinite transverse sizes an finite thickness was first time calculated by V. Pafomov
 - "V. E. Pafomov, Proceedings P. N. Lebedev Physics Institute, v. 44, 1971"
- However the approach is cumbersome...
- A. Potylitsyn and D. Karlovets developed another approach
 - "D. Karlovets, A. Potylitsyn, Universal description for different types of polarization radiation, 2010"
- The approach has polarization currents induced by a particle as the radiation origin:
 - the particle drives the polarization current whilst going through the medium
 - the current generates a magnetic field
 - the field quits the media

Number of photons per wavelength and solid angle:

$$\frac{\mathrm{d}^2 N}{\mathrm{d}\lambda \,\mathrm{d}\Omega} = 4\alpha \frac{\cos^2 \theta}{\left((1 - \beta_y n_y)^2 - \beta_z^2 \cos^2 \theta\right)^2} \left|\frac{\varepsilon - 1}{\varepsilon}\right|^2 \frac{L^2}{\lambda^3} \operatorname{sinc}^2 \left(\pi \frac{L}{\lambda} \frac{1 - \beta_z Z - n_y \beta_y}{\beta_z}\right) \times \left(\beta_y^2 \beta_z^2 \sin^2 \varphi \times \left(|Z|^2 + \sin^2 \theta\right) \left|\frac{\sqrt{\varepsilon}}{\cos \theta + Z}\right|^2 + \left|\frac{\varepsilon}{\cos \theta + Z}\right|^2 \left|(\beta_z^2 + n_y \beta_y + \beta_z Z - 1) \sin \theta - \beta_y \beta_z \cos \varphi Z\right|^2\right)$$

• *ε* – permittivity which depends on **wavelength**

$$m{ heta}$$
 and $m{arphi}$ are polar and azimuthal radiation angles

•
$$\beta_{x,v,z}$$
 are the particle velocity components

• $n_{x,y,z}$ are the ChR direction cosines

The radiation intensity proportional to L^2/λ^3 .

The *sinc()* function defines width of the ChR spectral line.

• The ChR spectral line width depends also on the medium $\varepsilon(\lambda)$ dispersion

• The empirical Sellmeiers formula has been taken:

$$\varepsilon(\lambda) = n^2(\lambda) = 1 + \frac{0.6961663\,\lambda^2}{\lambda^2 - 0.0684043^2} + \frac{0.4079426\,\lambda^2}{\lambda^2 - 0.1162414^2} + \frac{0.8974794\,\lambda^2}{\lambda^2 - 9.896161^2}$$

- It is proven for silicon glasses at the wavelengths lower than 700 nm
 - "R. Kitamura, L. Pilon and M. Jonasz, Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature, 2007"

Required steps to calculate the ChR:

- With the formulas we calculate the ChR intensity dependence on the wavelength and the vacuum outgoing angle
- E = 855 MeV, L = 200 μ m, Crystal Tilt (Ψ) = 23 deg

 The spectral line also depends on the crystal thickness L which was approximately derived in the original Tamm's theory:

$$\text{FWHM}^T \approx \frac{2\lambda}{\pi L \sin \theta_{ch}}$$

Experimental Setup

A4

Experimental Setup

- Main beam parameter:
 - continuous wave (cw) mode
 - *E* = 855 *MeV*
 - I_{beam} = 45 nA
 - $\sigma_h = 536 \ \mu m; \ \varepsilon_h = 7.8 \ nm \ rad$
 - $\sigma_v = 6.3 \, \mu m; \ \varepsilon_h = 0.5 \, nm \, rad$
- A fused silica target with 200 µm thickness and 20 mm diameter was used
- The target was placed on a multi-axis goniometric stage
- Spectrometer Hamamatsu Spectrometer C10082CA
- **Objective Schneider-Kreuznach Makro-Symmar 5.6/180**

Results

- The spectra at the different crystal tilt angles Ψ
- The chosen exposure time corresponds to 6.25 x 10¹⁴ electrons crossing the target
- Each spectrum is fitted with the Skewed Gaussian

Results

- The spectra positions coincide at best at the 22.5 degree crystal angle
- The disagreement at the other angles may be explained by two factors
 - 1. The chosen Sellmeiers parametrization may not describe the crystal perfectly
 - 2. The thermal conditions of the crystal have not been taken into account

Results

- The comparison of the intensities at each crystal angle
- The best agreement is seen at the 22.5 degree angle
- However the position 24 degree has a quite valuable disagreement:
 - The reason for that are the chromatic effects of the focusing lens part of the intensity didn't pass the entrance slit of the spectrometer.

- The quasi-monochromatic optical Cherenkov radiation produced in a dispersive medium has been observed
- The measurements are well described by the polarization currents model
- There are some discrepancies, but those should be investigated in future
- Such targets could be of interest among the beam profile diagnostics community as a possible substitute for scintillators and OTR

Thank you