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Motivation: typical accelerators

European XFEL 2017

8.6 km

LHC 2008 
CERN

→Colliders in fundamental science

→Driver for secondary light sources

→ Industrial applications

→But have grown to enormous sizes

→Field limited by vacuum breakdown to ~100 MV/m

Conventional RF cavity Picture: CERN

50 cm
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Compact accelerators with higher energy gain

Laser Plasma Accelerator & Wiggler

laser pulse

plasma
wake

gas nozzle

accelerated
electrons

&
x-rays

• relativistic energy electron bunches
within millimeters

• x-ray radiation from electrons
(betatron radiation)

10 cm

Laser-wakefield accelerator 2018
Lawrence Berkeley National Laboratory

M. Downer et al. Rev. Mod. Phys. 90 (2018)
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Laser-Wakefield Acceleration (LWFA) in a nutshell

▪ Accelerator medium: Neutral plasma consisting of ions and electrons
▪ Ionized by electrical discharge, preionizing laser or rising laser edge
▪ Neutral densities of about 10^19 cm³

Pukhov & Meyer-ter-Vehn, Appl. Phys. 74, (2002), Lu et al., Phys. Rev. ST Accel. Beams 10, (2007)
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Laser-Wakefield Acceleration (LWFA) in a nutshell

10 µm

Pukhov & Meyer-ter-Vehn, Appl. Phys. 74, (2002), Lu et al., Phys. Rev. ST Accel. Beams 10, (2007)

• Laser pulse has ponderomotive force FP proportional to intensity gradient
-> pushes electrons away from laser pulse
-> High intense laser pulse excites plasma waves

• Non-linear regime: complete electron blow-out
• electron-free plasma cavity or bubble
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Laser-Wakefield Acceleration (LWFA) in a nutshell

10 µm

• Laser pulse has ponderomotive force FP proportional to intensity gradient
-> pushes electrons away from laser pulse
-> High intense laser pulse excites plasma waves

• Non-linear regime: complete electron blow-out
• electron-free plasma cavity or bubble

FP

Linear electro-magnetic fields of plasma in cavity:

FF

FF

FA

• Longitudinal: Acceleration (energy gain)
• Transversal:  Focusing (betatron oscillations)
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Laser-Wakefield Acceleration (LWFA) in a nutshell

Injection and acceleration strongly depends on laser pulse and plasma parameters
-> requires stable laser systems and reproducible targets

10 µm

• Electron acceleration requires an injection of electrons into the cavity
• Electrons must copropagate with laser pulse at (almost) speed of light
• Successful trapping requires a matching in phase, bunch size & length, time, …
• Various injection schemes (external, wave-breaking, ionization, …)
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Example: Self-Truncated Ionisation Injection (STII) for short bunches

• Injection during interaction 

-> time must be limited for small energy spread

• Laser pulse and thus wakefield shape evolve 

during interaction such that injection conditions 

are only fulfilled for a short period

→ Self-Truncated Ionisation Injection (STII) 

Zeng et al. Phys. Plasmas 21, 030701 (2014),  

Mirzaie et al. Sci. Rep. 5, 14659 (2015),

Irman et al. PPCF, 60(4), 044015 (2018)

▪ Injection under two conditions:

▪ Laser intensity is high 

enough for ionisation

▪ pseudo-potential difference 

allows trapping
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Theoretical Limits: The three crucial parameters of LWFA

• Diffraction of laser pulse

• Approx. Rayleigh length

• External guiding, relativistic self-focusing

• Depletion of laser pulse: 

• laser energy transfer to plasma wake

• Dephasing of electrons: 

• entering the decelerating phase

Optimal performing LWFA for

• guiding and

• depletion length ~ dephasing length
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State of the Art: Experimentally achieved Beam Parameters

• Up to 8 GeV bunch energies        (Gonsalves et al., PRL 122, 084801(2019))

• High bunch charges of 600 pC (Li et al., Phys. Plasmas 24, 023108 (2017))

• Low energy spreads of ~1%         (Wang et al., PRL 117, 124891(2016))

• Short rms-bunch duration of 10fs  (Zarini et al. PRAB 25, 012801 (2022))

• Low emittance of 0.1 mm mrad (Plateau et al., PRL 109, 64802(2012))

• High shot-to-shot stability (Maier et al., PRX, 10, 031039(2020))

• Free-electron lasing at 27nm      (Wang et al., Nat., 595, 516–520(2021))

• Studies on high charges                (Götzfried et al., PRX, 10, 041015(2020))
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• Laser

– 30…100fs (FWHM) pulse width

– Has several Joules of energy

– Focussed to 10s µm spot size

– Critical: Strehl ratio

Typical basic setup for LWFA

• Diagnostics

– Charge (ICT, charge-calib. Screen)

– Electron energy (magn. Dipole)

– X-ray radiation (SPAE, crystals, 
scintillators)

– Transition radiation

– Transverse probing

• Target 

– Low ionization threshold
(1014…1016 W/cm²)

– Gas jet from nozzle

– Gas-filled capillary
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Experimental area at the HZDR

Ti:Sa Laser DRACO

▪ λ0 = 800 nm 

▪ up to 4 J on target

▪ 27 fs pulse width (FWHM)

▪ Strehl-ratio > 0.9

▪ 20 μm FWHM

U. Schramm et al. J. Phys. 
Conf. Ser., 874, 012028 (2017), 
PhD Thesis A. Köhler (2019)

beamline

laser-electron

Experimental cave

Betatron spectrometer

~12 m distance from source
→ attenuation of high x-ray flux

LWFA chamber



Slide 16Invited Talk 2022-09-13 Alexander Köhler 

Transverse probing: Imaging of the plasma cavity

• Same laser source for drive and transverse probe
-> inherently synchronized beams (e.g. pickup)

• Probe is few-cycle beam (fraction of main laser pulse duration)
• Taking multiple shots with different timing between pulses
-> Allowing to study the shape of the cavity
-> Space charge effects can cause reshaping of the cavity

Schwab et al., PRAB 23, 032801(2020), 
Schöbel et al., NJP 24, 083034(2022)

Propagation of drive laser
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Betatron profile indicates orientation of oscillation plane

K. Phuoc et al., PRL (2006), 
Döpp et al., Light Sci Appl 6, 
e17086 (2017)

• Scintillating screen (e.g. CsI) on beam axis

detects spatial profile of x-rays

• Profile depends on injection scheme

• Ionization injection improves shot-to-shot

reproducibility

• Laser polarization can steer the orientation of the

angular profile
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• Object obstructs betatron beam

• Fresnel diffraction at a sharp edge

• Fit on fringes returns the source 
size and critical energy

Measuring the betatron source size by Frensel diffraction

Kneip et al. PRSTAB 15, 021302(2012) 

Betatron
source

Object
Detector
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Detection methods for the betatron spectrum

Betatron radius can be deduced from the 
shape of the betatron spectrum 
-> Beam size

Köhler et al., NIMA 829, 265-269(2016) , Smid et al., Rev.Sci.Instr. 88, 063102(2017), Downer et al., Rev.Mod.Phys. 90(2018)

Detection of single photon events (SPAE)
-> Photon energy proportional to charge on CCD
-> requires low flux for correct binning

Crystals for X-ray diffraction
-> diffraction angle depends on energy
-> low efficiency is suitable for high flux
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Reconstructing the trace space of low emittance beams

Curcio et al., PRAB 20, 012801(2017)

Simultaneous, single-shot measurements of:

• Electron spectrum,

• Betatron spectrum, and

• Plasma density

A model that including all three
quantities could reconstruct:

-> Trace space of the bunch

-> Emittance with correlation term
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Electron dynamic in the transverse phase space

▪ Transverse phase space represents possible electron dynamic
→ transverse position 𝑥 and momentum 𝑝𝑥

▪ Electron orbits with energy-dependent betatron frequency 𝜔𝛽 =
𝜔𝑝

2𝛾(𝑡)

Khachatryan et al. PRSTAB (2007)
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Coupling of energy spread and phase advance

𝚫𝝓

𝜸𝝈𝜽

▪ Bunch has finite length and energy spread

▪ Slices for each energy

→ energy-dependent rotation with betatron frequency

→ energy spread causes betatron phase difference 𝜟𝝓

▪ Small energy sprea→ Small divergence possible

▪ Large energy spread → Full decoherence

Koehler et al., PRAB, 
24, 091302(2021)
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Phase space dynamics in plasma-wakefield accelerators

X. L. Xu et al. PRL 112,035003 (2014)

0)  Injection: Emittance rapidly growing

1) End of injection:  finite length and 

energy spread, max. emittance

2) Betatron phase mixing of bunch 

length and energy spread, 

emittance decreases again

3) Growing emittance dominated by 

energy spread

-> approaching saturated emittance

Normalized emittance
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Conventional and plasma-based light sources

Sources driven by LWFA

• FEL

• Undulator, wiggler

• Compton, Thomson

• Betatron

• Bremsstrahlung

F. Abert, A. Thomas, Plasma Phys. Control. Fusion 58 (2016)



Slide 27Invited Talk 2022-09-13 Alexander Köhler 

Example: Betatron radiation as x-ray source

→ Possible applications

▪ Phase contrast imaging
▪ Near-edge absorption

spectroscopy

Property Typical

Wavelength 1…0.1nm
Spectrum broadband
Spot size ~ 1µm

Divergence ~ 10mrad
Pulse length < tens fs

→X-ray source with
high peak flux

~ 108 photons

eVmm2mrad2

@ 10 keV
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• LWFA has demonstrated impressive beam parameters

• Free-electron lasing has been shown with LWFA and PWFA

• Plasma accelerators require new advanced, single-shot
diagnostics

• Plasma accelerators are ready to use as a new driver for light 
sources and pump-probe experiments

Conclusion and Outlook
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