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Abstract
An exploration into the application of three machine learn-

ing (ML) approaches to identify and separate events in the de-
tectors used for particle counting at the GSI Helmholtz Cen-
tre for Heavy Ion Research was performed. A shape-based
template matching algorithm (STMF), Peak Property-based
Counting Algorithm (PPCA) and convolutional neural net-
work (CNN) were tested for counting the number of particles
accurately without domain-specific knowledge required to
run the currently used algorithm. The three domain-agnostic
ML algorithms are based on data from scintillation coun-
ters commonly used in beam instrumentation and represent
proof-of-principle for an automated particle counting sys-
tem. The algorithms were trained on a labelled set of over
150 000 experimental particle data. The results of the three
classification approaches were compared to find a solution
that best mitigates the effects of particle pile-ups. The two
best-achieving algorithms were PPCA and CNN, achieving
an accuracy of over 99%.

INTRODUCTION
As charged particle beams pass through a scintillation

counter, it induces the excitations in the scintillation mate-
rial which relaxed with emission of photons. These photons
are amplified using photo multiplier tubes (PMT) which
outputs a voltage pulse measured over time. The shortest
pulse lengths are typically of the order of few ns given by
the scintillation process itself. The transportation of these
pulses from the radiation environment to the detection elec-
tronics is about 50-100 m, which further increases the pulse
length due to cable dispersion. As the rate of particles arriv-
ing at the scintillator increases so does the probability for
signal pile-ups, a overlap of sequential pulses. Due to com-
plex slow extraction process from the particle accelerators
and sub Poissonion particle distribution [1], non-negligible
percentage of signal pile-ups occur at most particle arrival
rates. These complex, hard-to-count, peak shapes change in
a non-linear fashion. The interference causes difficulties in
using conventional computing methods to accurately count
particles, although strategies to mitigate them using hard-
ware [2] and software solutions [3, 4] have been explored.
Notably several ML approaches have been developed with
some success by relying on domain-specific knowledge and
feature engineering specific to the detector [3–5].

Other more general ML approaches rely on 2D data and/or
data with multiple features [6], demonstrating domain-
∗ samuel-engel@outlook.com
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specific knowledge is not necessary to provide satisfactory
results. Specifically, CNN’s prove to be the ideal conven-
tional ML solution because of their robustness and the abil-
ity to create a domain agnostic, end-to-end discriminating
model which eliminates unnecessary domain-specific pre-
processing [7].

DATA COLLECTION AND
TRANSFORMATION

The major portion of the training and testing data con-
sisted of high-resolution experimental data of 1.5 × 105

peaks collected at the SIS18 synchrotron at GSI with a sam-
pling rate of 2.5 GSa/s. The data was labelled by fine-tuning
the present particle counting algorithm. Therefore, only la-
beled data with a low extraction rate of up to 3 × 105 particles
per second could be used.

Low-resolution data was generated by downsampling the
high-resolution data collected at (2.5 × 109) samples per
second as seen in Fig. 1. Data was downsampled by a factor
of 𝑠 to test the accuracy at various resolutions.

The high-resolution data was bootstrapped by combining
an offset copy of a time series with the original to create
more complex shapes representative of data with a higher
rate of particles.

The validation data of 416 peaks was experimentally col-
lected by firing a laser at the scintillation counter at precisely
set intervals to selectively generate various pile-up shapes.

Figure 1: Graph showing a section of a time series with a
close-up of a peak

TIME SERIES CLASSIFICATION USING
SUPERVISED MACHINE LEARNING

1. Shape-based Template Matching Framework (STMF)

2. Peak Property-based Counting Algorithm (PPCA)

3. Convolutional neural network (CNN)
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Shape-based Template Matching Framework
The shape-based template matching framework is an im-

plementation based on a study exploring efficient matching
of templates with sections of time series [8]. The training
data time series is segmented into peak groups of 1, 2, 3 . . .
particles and a template is constructed for each one. A time
series segment is classified by comparing it to every tem-
plate to determine the best fit. The approach mimics the way
humans approach the problem.

The templates were constructed using an averaging
scheme which determines how each labelled peak group
time series segment is combined. The cubic-spline dynamic
time warping (CDTW) averaging function was iteratively
applied to the two most similar time series. The averaged
time series replaces the two original ones. Eventually, the
result is a single time series representative of the peak group
which became the template for that peak group.

An implementation of the dynamic time warping (DTW)
algorithm was used to determine the similarity between
a given peak group time series and every generated tem-
plate. Dynamic time warping is a method of comparing two
time series of unequal lengths and finding their similarity
as demonstrated in Fig. 2. It warps the time series to match
points regardless of shifts or distortions in time, creating a
warping path [9]. A DTW warping path is a map matching
each corresponding point in the two time series where the
matching can be one-to-one, one-to-many or many-to-one
due to the time series having unequal lengths [10].

Figure 2: Graph showing a DTW mapping between two
3 peak time series segments.

Peak Property-based Counting Algorithm
The peak property based counting algorithm (PPCA)

works on the principle of peaks having certain mathematical
properties which define them, namely the peak width, height,
prominence and the distance between peaks. The algorithm
uses labelled data to find the optimal attribute ranges such
that all peaks are counted correctly. Establishing the peak
properties of the labelled peaks allows the algorithm to learn
the mathematical property ranges which contain all the peaks
being counted.

The algorithm works with segments of arbitrary length
given every peak in the segment is present in its entirety in

order to calculate all the properties. Prominence 𝑃 is cal-
culated as the vertical distance to the peak’s lowest contour
line 𝑃𝐶𝑙 . The peak’s two contour lines are determined by
the segment between the nearest peak on either side. The
minimum point of each of the two segments are the peak
bases. The highest peak base defines the lowest contour
line 𝑃𝐶𝑙 . The height of a peak is the 𝑦 value of the data
point in the peak’s centre. The peak width is determined
at an evaluation height ℎeval which is calculated first using
ℎeval = ℎpeak − 𝑃 · 0.5.

Half of the prominence 𝑃 of a peak is subtracted from the
height of the peak ℎpeak to find the height at which the width
is measured. Half of the prominence is used to achieve the
most accurate results across a variety of peak shapes. The
width is calculated by getting an intersecting point with the
data at the evaluation height on both sides. The distance be-
tween peaks is calculated as the horizontal distance between
neighbouring peak centres. Lastly, a threshold is set to be
just above the baseline in order to avoid any false positives
arising from the noise in the baseline.

The training of the model weights relied on optimizing the
parameters of the peak finding function. The labels of the
training data contain the time at the centre of every peak. The
first stage of the training involves extracting the properties
of all labelled peaks which are visualized in Fig. 3.

Figure 3: A visualization of the mathematical peak proper-
ties captured.

All the relevant peak data allows for several statistical
methods to be applied to establish trends and find the most
optimal combination of parameters for finding the peak’s
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lower and upper bound respectively. The number of standard
deviations the minimum and maximum are from the mean
is used as a measure to ensure an outlier is not causing
distortions in order to get a clean set of weights representing
peak property bounds. Finally the peak finding function is
run on the test data set with the weights as the parameters.
Comparing the results with the labels gives the loss function
consisting of the sum of false positives and negatives. This
step is repeated iteratively while progressively changing the
weights, one at a time. The weights are optimized in an order
of importance determined by the peak finding function. The
optimization order starts with the peak height followed by
the threshold, distance, prominence and lastly the width.

The algorithm uses the weights learned in the training
step to identify distinct peaks representing particles. Each
weight represents the lower or upper bound of one of the
parameters. The resulting combination of lower and upper
bounds defines ranges into which all particle peaks fall. The
order in which the properties are evaluated is important in
terms of performance. The goal is to eliminate the greatest
number of particle peaks which fall outside of the bounds
using the least computationally demanding property eval-
uation method. That way, the number of potential particle
peaks is reduced and only a fraction has to be evaluated using
the more computationally demanding property evaluation
methods.

Convolutional Neural Network
The one-dimensional convolutional neural network

(CNN) uses discriminative supervised learning to count par-
ticles. It learns features from raw time series data rather
than through engineered features such as the peak shape or
properties used for the previous two approaches. The input
data is segmented into even-sized windows before the model
is trained by learning the intrinsic features.

Every segment is labelled with the number of peak centres
it contains meaning at least more than half of each peak’s
data points needs to be inside the window for it to be counted.
Windows with only the baseline tend to vary very little from
one another and their over-representation creates a redun-
dancy which confuses the feature learning aspect of the CNN.
A pruning technique had to be adapted to reduce redundant
baseline data and decrease the time complexity of the al-
gorithm. The technique settled on is based on separating
windows labelled with 0 peaks into two categories. Baseline-
only windows and windows with a fraction of a peak with
less than 50% of the peak’s data points. Just the baseline-
only windows contain redundant information whereas the
fractions of peaks are all different and contain key informa-
tion. The baseline-only windows are reduced by a pruning
factor which determines what proportion of baseline-only
windows is kept.

The CNN model is developed using the Keras deep learn-
ing library which requires a 3-dimensional input for all its
models. The design of the sequential model can be seen
in Fig. 4. The input layer is fed data in the form of sam-
ples, time steps and features form the 3-dimensional input

Figure 4: Diagram showing layers of the CNN model

required. The samples are the windows from the data seg-
mentation step. Each sample or window has 𝑆 time steps
which is one of the hyper-parameters of the model. The
last dimension is the features although in this case, the only
feature available was the voltage. The lack of features was
one of the main challenges with managing the deep learning
approach and caused difficulties in increasing the model’s
accuracy without overfitting the data. The model starts with
a pair of two 1D convolutional layers, the first one being the
input layer. The dropout layer is used for regularization by
ignoring some of the features of the two convolutional layers
to limit overfitting.

The max-pooling layer reduces the size of the learned fea-
tures by 1

4 by summarizing the features to the most essential
ones. All of the features are then flattened into a large 1d
vector before it is passed to the fully-connected layer towards
the end of the sequential Keras model. The fully connected
layer is a dense layer which serves as a buffer to consolidate
the learned features before prediction takes place. The last
layer is the output layer which is also a dense layer. However,
its job is to simply make a prediction based on the learned
features passed down to it from the previous layers. A win-
dow can be fed directly into the model in a stream to enable
real-time data classification. The model outputs a list of
probabilities of the window containing 1 peak, 2 peaks etc.
based on the learned features.

RESULTS & PERFORMANCE
The exploratory project is a proof-of-work showing ma-

chine learning can be used to successfully count particles.
Such accuracy was achieved using a domain-agnostic ap-
proach which only takes into account the time series data
and no specific information about the experiment or the in-
struments used. The comparison in terms of accuracy can
be found in Table 1. However, assessing the accuracy of
the 3 solutions solely based on the performance from the
available data shows only one side of the picture. Consid-
ering the strengths and weaknesses of the three approaches
allows predicting how the accuracy would change under
different conditions. The PPCA not only has the highest
accuracy out of the three algorithms but it is also strong in
simplicity and observability. All of these qualities are highly
desirable when it comes to conducting scientific analysis.
However, the lack of complexity comes with a downside
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of a lack of robustness. It is likely the PPCA is the least
adaptable solution to varying conditions or new trends in
the data. Specifically, a higher rate of particles producing
more complex shapes could result in peaks that physically
cannot be described using parameter limits. On the other
hand, the CNN is specifically designed to learn intrinsic
features in the data so as to allow it to adapt to different
trends in the data. The CNN design is much more adapt-
able and has the fewest limits out of the 3 approaches in
terms of how complex the peak shapes can be. The PPCA
seems to be the most suitable approach for the data used
in this contribution. However given that the difference in
CNN performance compared to the PPCA is minimal, and
with higher adaptability of CNN, we believe it could be a
promising approach with wider variety of data. Lastly, the
STMF suffers from the same weaknesses as the PPCA in
terms of being limited by the complexity of the peak shapes.
The more peaks there are in a segment, the less representa-
tive a template becomes meaning the number of segments
without a match increases as well. Adapting the STMF to
train multiple templates per peak label could address this
issue but the increased complexity would not be worth the
minimal improvement.

Table 1: Accuracy and Space Performance of the 3 Algo-
rithms

Accuracy (%) Storage Requirements
PPCA 99.97 <1 kB
STMF 96.71 <20 kB
CNN 99.84 <1 MB

Table 2: Time Performance for Classification

Average time in seconds
Classify 1 peak Classify 1000 peaks

PPCA 0.00023 0.23
STMF 0.024 24.5
CNN 0.063 62.7

FUTURE WORK
The limitations of the labelled data restricted the algo-

rithms to only be trained and tested at a low extraction rate
up to 3 × 105 particles per second. Therefore, further de-
velopment should focus on improving the chosen algorithm
to enable classification at higher extraction rates without
major losses in accuracy. The use of convolutional neural
network has proven to be the best performing algorithm

considering the combination of accuracy, adaptability and
implementability. Therefore, a more in depth research into
the application of a CNN for particle counting should be
conducted. Exploring the ways in which the algorithm can
be implemented as a part of the detector using an FPGA or
a similar approach would also be a very productive area of
future research.
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