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Abstract
ZnO-based ceramics are known as promising scintillators

exhibiting light emission in the ultraviolet (UV) spectral
region (∼390 nm) and ultrafast decay times (<1 ns). They
are of great interest for applications in scintillation counters
and screens at high-energy heavy ion accelerators. In this
contribution, the deterioration of scintillating properties of
ZnO-based ceramics subjected to heavy ion exposure at
high doses is investigated. The scintillation light spectra of
ZnO(In) as a function of fluence for 4.8 MeV/u 48Ca and
197Au ions were studied. We observed that the deterioration
of the scintillation intensity with increasing fluence follows
the Birks-Black model.

INTRODUCTION
Zinc oxide is a multi-functional material with many appli-

cations due to its interesting properties [1, 2]. In particular,
since the 1960s it has been known as a promising scintillation
material that exhibits sub-nanosecond fast light emission at
room temperature [3–5]. Previously, pure and doped ZnO
has been produced in various forms (powder, thin films,
single- and poly-crystals, and ceramics) with the purpose of
detecting different types of ionizing radiation [6–9].

Recent studies and technological advances have made
it possible to produce bulk pieces of indium- and gallium-
doped zinc oxide ceramics (ZnO(In) and ZnO(Ga)) by uni-
axial hot pressing in vacuum [10, 11]. These scintillating ce-
ramics become highly interesting for heavy-ion radiation de-
tection at accelerator facilities like GSI and the future FAIR
facility in Darmstadt, Germany [12]. ZnO(In) and ZnO(Ga)
scintillators are considered as promising candidates to sub-
stitute plastic scintillator BC400 commonly used for beam
intensity monitoring and spill micro-structure characteriza-
tion at SIS-18 synchrotron, where ion beams from proton
to uranium with energies from 150 MeV/u to 4.5 GeV/u can
be obtained.

As a part of a research and development project for a
radiation-resistant fast scintillation detector, we report on
the performance and in-situ characterization of ZnO(In) ce-
ramics scintillation light spectra change as a function of ion
fluence.
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ZnO(In) SCINTILLATION SPECTRA
The investigated ZnO(In) ceramic sampels were produced

in the form of 8 mm × 8 mm × 0.4 mm size plates at the
Joint Stock Company “Research and Production Corporation
S.I. Vavilova” (St. Petersburg, Russia). The samples were
produced with 0.046 at % In3+ dopping concentration. Sam-
ples density estimated from mass and volume measurements
was 4.66 g/cm2.

In-situ characterization of scintillation light spectra was
performed using 4.8 MeV/u energy 48Ca and 197Au ions
from UNIversal Linear ACcelerator (UNILAC) of the GSI
Helmholtz Center for Heavy Ion Research GmbH (Darm-
stadt, Germany) [13]. The irradiations were carried out at
room temperature in vacuum at a beam incidence angle of
45∘ with respect to the sample surface.

Scintillation light was collected with a lens placed in front
of the ion-incident surface of the sample. The collected light
was transfered via a light guide to an Ocean Optics QE-Pro
spectrometer. The acquired spectra were corrected for dark
counts and normalized by the number of ions that hit the
sample during the spectrum acquisition.

Figure 1 shows how the scintillation light spectrum of
ZnO(In) ceramic sample changes as a result of 4.8 MeV/u
48Ca ion irradiation. The spectra have only one emission

Figure 1: Spectra of ZnO(In) ceramic as a function of
4.8 MeV/u 48Ca ion fluence.

band in the ultraviolet (UV) light region with a maximum at
around 387 nm. The observed peak corresponds to the near-
band-edge emission (NBE) known for scintillation decay
times less than nanosecond. With increasing fluence, the
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intensity of this NBE band drops considerably. No new light
emission bands are formed as a result of the ion irradiation,
not even at the highest fluences reached, 5×1012 Ca-ions/cm2

and 2×1011 Au-ions/cm2.

BIRKS-BLACK MODEL FIT
The Birks-Black model [14] was used to fit the observed

NBE peak intensity reduction as a function of Ca and Au
ion fluence. According to this model, the reduction of the
scintillation light intensity can be presented as:

𝐼(Φ)
𝐼0

= 1
1 + Φ

Φ1/2

, (1)

where 𝐼0 is the initial scintillation light intensity, and Φ1/2
is the critical fluence at which the scintillation light intensity
is reduced by 50% of the initial value.

Figure 2 shows the NBE peak intensity as a function of
the Ca and Au ion fluence. The intensity evolution follows
the Birks-Black model for both ion species. The critical
fluence values extracted from a fit of Eq. (1) to the data
are 3.3×1011 Ca-ions/cm2 and 3.5×109 Au-ions/cm2, respec-
tively.

Figure 2: Intensity of the NBE peak (387 nm) of the scin-
tillation spectrum as a function of irradiation fluence using
48Ca ions (full circles) and 197Au ions (open stars). The
dashed line represent fits with Eq. (1) from the Birks-Black
model.

CONCLUSIONS
ZnO-based scintillating ceramics are promising materials

to be used for heavy-ion particle detection applications. In
this work, ZnO(In) scintillating ceramics were exposed to
4.8 MeV/u 48Ca and 197Au ion beams in order to investigate
the changes in scintillation light spectrum as a function of
swift heavy ion fluence. The scintillation light intensity
follows the trend predicted by the Birks-Black model. As a
result of high fluence irradiation, no new peak formation was

observed up to 5×1012 Ca-ions/cm2 and 2×1011 Au-ions/cm2

irradiation at 4.8 MeV/u energy.
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