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Abstract

Noise in beam measurements is an ever-present challenge
in accelerator operations. In addition to the challenges pre-
sented by hardware and signal processing, new operational
regimes, such as ultra-short bunches, create additional diffi-
culties in routine beam measurements. Techniques in ma-
chine learning have been successfully applied in other do-
mains to overcome challenges inherent in noisy data. Vari-
ational autoencoders (VAEs) are shown to be capable of
removing significant leevels of noise. A VAE can be used as
a pre-processing tool for noise removal before the de-noised
data is analyzed via other methods, or the VAE can be di-
rectly used to make beam dynamics measurements. Here
we present the use of VAEs as a tool for addressing noise in
BPM measurements.

INTRODUCTION

In recent years machine learning (ML) has been identified
as having the potential for significant impact on the modeling,
operation, and control of particle accelerators (e.g. see [1,
2]). Specifically, in the diagnostics space, there have been
many efforts focused on improving measurement capabilities
and detecting faulty instruments. Relatively recently, ML
methods have been utilized to improve optics measurements
from beam position monitor data [3]. Additionally, machine
learning has been used to identify and remove malfunction-
ing beam position monitors in the Large Hadron Collider
(LHC), prior to application of standard optics correction
algorithms [4]. However, noise in BPM measurements re-
mains an issue for processing in even functioning BPMs.
The ability to remove noise from these measurements would
greatly improve our ability to extract meaningful information
from these instruments.

Variational autoencoders (VAEs) are a well established
tool for noise reduction due to the enforcement of a smooth-
ness condition in the latent-space representation. This fea-
ture of VAEs has been applied to gravitational wave re-
search [5, 6] and geophysical data [7], for example. Recur-
rent autoencoders have the added advantage of being well
suited to work with data sequences. In this paper we explore
the use of Variational Recurrent Autoencoders (VRAEs) to
remove different power law spectra (colors) of noise from
simulated BPM data in a ring. We begin with a review of our
data generation model, we then analyze the noise reduction
capabilities for Gaussian noise. Finally we test our method
using additive noise with different power law spectra.

DATA GENERATION
To simplify exploration of this noise removal technique in

this work, we only consider data generated from a simplified
model of a circular (periodic) accelerator with analytic solu-
tions [8] . Rather than composing the accelerator of discrete
focusing magnets we consider a uniform focusing channel
with coupled optics. This reduces the problem to that of a
coupled oscillator. We are only considering motion in the
transverse plane, such that the equations of motion will be:

𝑑2𝑥

𝑑\
+ a𝑥𝑥 + 𝐶𝑦 = 0

𝑑2𝑦

𝑑\
+ a𝑦𝑦 + 𝐶𝑥 = 0.

(1)

Where 𝐶 is the coupling strength and \ = 2𝜋 𝑓 𝑡 is the
fractional revolution period in radians. The solutions to the
coupled equations of motion will then be:

𝑥 (\) = 𝐴𝑥 cos (a+\) + 𝐵𝑥 cos (a−\)
𝑦 (\) = 𝐴𝑦 cos (a+\) + 𝐵𝑦 cos (a−\) ,

(2)

with the coupled oscillation frequency given by:

a2
± =

1
2

(
a2
𝑥 + a2

𝑦 ±
√︃(

a2
𝑥 + a2

𝑦

)2 + 4𝐶2
)
. (3)

The principal goal of the analysis tools developed in this
paper will be to extract correct, independent frequencies
from noisy, periodic measurements of 𝑥 and 𝑦. These are
referred to as the tunes, a𝑥 and a𝑦 , in Eq. (1). The amplitude
coefficients may be uniquely determined from the initial 𝑥
and 𝑦 positions, but are not included here as we do not use
them in analyzing performance of the methods presented.
Out dataset was generated with tune values ranging from
0.05 to 1.6 and a coupling parameter of 0.1. Figure 1 shows
an example of this generated data.

To create test and training data 𝑥 and 𝑦, position data is
sampled as if from 𝑀 BPMs placed around a ring so that
BPM 𝑚 will have a phase offset of 𝜑 = 2𝜋a𝑚/𝑀 . Noise in
the measurements at each turn 𝑁 is sampled from a normal
distributionN(0, 𝜎𝑀 ), where the variance𝜎𝑀 , representing
the noisiness of each BPM, has been set by sampling from a
normal distribution N(0, 𝜎𝑛𝑜𝑖𝑠𝑒).

The Variational Recurrent Autoencoder Model
For the VAE model, since we are analyzing time series

data, we use a recurrent network architecture for the encoder
and decoder, which we will refer to as a VRAE. The im-
plementation of the VRAE architecture is based on [9] and
uses Long Short-Term Memory (LSTM) units for both the
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Figure 1: Example of data produced from discrete sampling
of Eq. (2) to simulate BPM placement around a ring. Data
was created with a Gaussian noise of 𝜎𝑛𝑜𝑖𝑠𝑒 = 0.25 applied.

Encoder Decoder...

Figure 2: Structure of the VRAE showing encoder and de-
coder with latent layer parameterized in terms of mean `𝑖
and variance 𝜎𝑖 for the latent space distribution of dimension
𝑖.

encoder and decoder. A schematic of the VRAE is shown
in Fig. 2. Both encoder and decoder contain 1 hidden layer
of size 90. The latent space dimension was varied from 2
to 6. Linear layers are used to transform from the LSTM
output to the distribution parameterization for sampling the
latent space. The loss function is composed of two terms:
the Kullback–Leibler divergence [10] — which acts as a
regularization term — and the reconstruction loss. For the
reconstruction loss, mean squared error between the encoder
input and decoder output is used.

The VRAE was trained on generated data with a sequence
length of 28 turns and with 56 features (28 BPM measure-
ments of 𝑥 and 28 measurements of 𝑦). Training data am-
plitude was initially normalized, however, this seemed to
result in over-fitting and the model would show poor perfor-
mance when applied to datasets with noise levels or periods
that differed from the training set. Training with a dataset

Figure 3: Comparison of autoencoder outputs and inputs
without noise for several different BPMs.

Figure 4: Histogram of the prediction error between the
autoencoder output and the noise-subtracted signal for an
autoencoder trained both with and without noise. Here we
explore the sensitivity of the noise reduction capabilities to
size of the latent space. The noise distribution is shown in
blue for reference.

Figure 5: Histogram of the prediction error between the
autoencoder output and the noise subtracted signal for an
autoencoder trained both with and without noise. Here we
explore the sensitivity of the noise reduction capabilities to
the network depth. The noise distribution is shown in blue
for reference.
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Figure 6: Power spectral densities for different colors of noise, with densities proportional to 1/f 𝛽 . The factor 𝛽 for each
color of noise, from left to right, is two (violet), one (blue), zero (white), negative one (pink), and negative two (red).

of random initial amplitudes significantly improved overall
performance.

Training for both types of autoencoders was performed in
the RadiaSoft Sirepo computing platform on NVIDIA Tesla
V100 GPUs. Datasets of 50 000 samples were generated
from an analytic accelerator model with varying levels of
noise, depending on testing to be run. From each dataset,
90% was used for training and 10% for validation.

GAUSSIAN NOISE REDUCTION
Before considering colored noise, we look at random

Gaussian noise. Random Gaussian noise has a power spec-
trum identical to gray or white noise. We trained the au-
toencoder using data with random noise and compared the
reconstruction to the input data with noise subtracted. We
explored a wide range of configurations for training and
testing, including different model structures. We trained
on different noise levels, including on data without noise,
to better understand the VRAE’s noise reduction capabili-
ties. First we considered training on 20% additive Gaussian
Noise. Figure 3 shows a comparison of the autoencoder
reconstruction, the noise subtracted data, and the noisy data,
for the horizontal and vertical positions of three BPMs in
our dataset. Here we see that the VRAE does a very good
job of removing noise from the BPM data.

One way to quantify the level of noise is to compute the
mean squared error for each BPM and then compute the
mean squared error of the errors for all BPMs. Here the
error is defined as the difference between the reconstruction
and the input data with the noise subtracted. We computed
the histograms of these errors over a number of trials and
compared the results for several different test cases. Figure 4
shows the noise reduction capabilities of an autoencoder
trained and tested on data with noise. Here we also vary
the number of latent dimensions. Not only do we see a
significant increase in the noise reduction capabilities of this
network, but we also see an increase in the noise reduction
effectiveness as we increase the number of latent dimensions.
This test case is also more representative of operational data
where one will not be able to remove the noise prior to
training, and would instead be relying on the autoencoder to
provide noise reduction.

Figure 5 compares the denoising ability of an autoencoder
trained with and without noise, but while varying the number
of latent layers of the network. Here the increased depth does
appear to improve the noise reduction capabilities, but by far
the largest effect is training with noisy data. In all cases there
is a peak in the error around 0.5 — these are cases where
the autoencoder does not do a good job of reconstructing
the original signal.

COLORED NOISE
Our work thus far has been focused on Gaussian random

noise, which has no amplitude dependence on frequency,
making it white noise (gray in Fig. 6). In electronic sys-
tems operated under different environmental conditions, it
is possible to have many different kinds of noise. To better
understand how well this technique will generalize to real
BPM systems, we explore the removal of different colors
of noise. Colored noise referrers to power spectrum noise
where the intensity of the noise varies with the frequency
of the signal. White or gray noise has a uniform intensity
with frequency. Pink noise is noise where the intensity is
inversely proportional to the frequency in a 1/ 𝑓 relation-
ship. For our study we explored denoisinig for four different
types of power law noise. Figure 6 shows different spectra
of power law noise with their color designations.

Figures 7 and 8 show the results for noise reduction on
both Red and Violet noise, respectively, the spectral densities
of which have the strongest dependence on frequency. In
both cases the VRAE does a good job removing the noise
and the results are fairly similar. There are subtle differences
between the performance on the two different types of noise,
but overall the VRAE is not sensitive to either noise type.

CONCLUSIONS
We have generated a test dataset using a linear optics

model and used this dataset to evaluate the ability of VRAEs
to remove different types of noise. We explored the effect of
different VRAE architectures in conjunction with different
noise types, thus demonstrating the efficacy of this technique
under a variety of circumstances. Additional work is needed
to better understand cases where the VRAE does a poor job
of reconstructing signals, leading to an increase in effective
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noise. Careful consideration for these edge cases will be
important when implementing the method on operational
data.
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Figure 7: Noise reduction study for Red noise showing ef-
fective reduction of the noise spectrum.

Figure 8: Noise reduction study for Violet noise showing
effective reduction of the noise spectrum.
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