Author: Veness, R.
Paper Title Page
TUP17 HL-LHC Beam Gas Fluorescence Studies for Transverse Profile Measurement 261
 
  • O. Sedláček, M. Ady, C. Castro Sequeiro, A.R. Churchman, S. Mazzoni, G. Schneider, K. Sidorowski, R. Veness
    CERN, Meyrin, Switzerland
  • P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • M. Sameed
    European Organization for Nuclear Research (CERN), Geneva, Switzerland
  • O. Sedláček, O. Stringer, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • O. Sedláček, O. Stringer, C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  In a gas jet monitor, a supersonic gas curtain is injected into the beam pipe and interacts with the charged particle beam. The monitor exploits fluorescence induced by beam-gas interactions, thus providing a minimally invasive transverse profile measurement. Such a monitor is being developed as part of the High Luminosity LHC upgrade at CERN. As a preliminary study, the fluorescence cross section of relevant gases must be measured for protons at 450 GeV and 6.8 TeV (i.e. the LHC injection and flat top energies). In these measurements, neon, or alternatively nitrogen gas, will be injected into the LHC vacuum pipe by a regulated gas valve to create an extended pressure bump. This work presents the optical detection system that was installed in 2022 in the LHC to measure luminescence cross-section and horizontal beam profile. Preliminary measurements of background light and first signals are presented in this paper.  
poster icon Poster TUP17 [0.673 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP17  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 14 September 2022 — Issue date ※ 21 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP23 Assessing the Performance of the New Beam Wire Scanners for the CERN LHC Injectors 443
 
  • S. Di Carlo, W. Andreazza, D. Belohrad, J. Emery, J.C. Esteban Felipe, A. Goldblatt, D. Gudkov, A. Guerrero, S. Jackson, G.O. Lacarrere, M. Martin Nieto, A.T. Rinaldi, F. Roncarolo, C. Schillinger, R. Veness
    CERN, Meyrin, Switzerland
 
  The ability of reliably measuring the transverse beam profile in its injectors is essential for the operation of the LHC. This report aims to assess the reliability, stability, and reproducibility of the new generation of beam wire scanners developed at CERN in the framework of the LHC Injectors Upgrade (LIU). The study includes data from the over 60000 scans performed in 2021 and 2022, with a special focus on reproducibility, investigation of optimal operational settings to ensure a large dynamic range, and evaluation of absolute accuracy through comparison with other instruments present in the injectors.  
poster icon Poster WEP23 [1.590 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP23  
About • Received ※ 06 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 10 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3C4 Simulated Behavior of CNT Wires Irradiated in the HiRadMat Experimental Line at CERN 527
 
  • A. Mariet, B. Moser, R. Veness
    CERN, Meyrin, Switzerland
  • M. Devel, J.E. Groetz
    UFC, Besançon, France
  • A. Mikhalchan, J.J. Vilatela
    IMDEA, Madrid, Spain
 
  With the planned increase of luminosity at CERN for HL-LHC and FCC, instruments for beam quality control must meet new challenges. The current wires, made up of plain carbon fibers and gold-plated tungsten would be damaged due to their interactions with the higher luminosity beams. We are currently testing a new and innovative material, with improved performance: carbon nanotube fibers (CNTF). The HiRadMat (High Radiation for Material) experimental line at the output of the SPS is a user facility which can irradiate fix targets up to 440 GeV/c. CNTF with various diameters were irradiated in HiRadMat with different intensities, later imaged with a SEM microscope and tested for their mechanical properties. In addition, simulations have been carried out with the FLUKA particle physics Monte-Carlo code, in order to better understand the mechanisms and assess the energy deposition from protons at 440 GeV/c in those CNTF wires, depending mainly on their diameters and densities. This could lead to a good estimation of the CNTF temperature during irradiation. In this contribution, we first present the HiRadMat experimental setup and then we discuss the results of our FLUKA simulations.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides WE3C4 [4.793 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WE3C4  
About • Received ※ 07 September 2022 — Revised ※ 11 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 27 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)