Author: Ozkan Loch, C.
Paper Title Page
MOP01 SLS 2.0 – Status of the Diagnostics 15
 
  • C. Ozkan Loch, R. Ischebeck, N. Samadi, A.M.M. Stampfli, J. Vila Comamala
    PSI, Villigen PSI, Switzerland
 
  This poster will give an overview of the diagnostics development for SLS 2.0. Details on the beam size monitors in the storage ring, the screen monitors for the booster to ring transfer line, and beam loss monitors for the linac and storage ring will be presented. Test results carried out at the SLS will also be presented.
BPMs and feedback systems are not covered in this contribution.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP01  
About • Received ※ 06 September 2022 — Revised ※ 13 September 2022 — Accepted ※ 18 September 2022 — Issue date ※ 01 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1C2 An X-Ray Beam Property Analyzer Based on Dispersive Crystal Diffraction 366
 
  • N. Samadi, G. Lovric, C. Ozkan Loch
    PSI, Villigen PSI, Switzerland
  • X. Shi
    ANL, Lemont, Illinois, USA
 
  The advance in low-emittance x-ray sources urges the development of novel diagnostic techniques. Existing systems either have limited resolution or rely heavily on the quality of the optical system. An x-ray beam property analyzer based on a multi-crystal diffraction geometry was recently introduced. By measuring the transmitted beam profile of a dispersive Laue crystal downstream of a double-crystal monochromator, the system can provide a high-sensitivity characterization of spatial source properties, namely, size, divergence, position, and angle in the diffraction plane of the system at a single location in a beamline. In this work, we present the experimental validation at a super-bending magnet beamline at the Swiss Light Source and refine the method to allow for time-resolved characterization of the beam. Simulations are then carried out to show that the system is feasible to characterize source properties at undulator beamlines for fourth-generation light sources.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides WE1C2 [4.592 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WE1C2  
About • Received ※ 08 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)