Author: Mathisen, S.L.
Paper Title Page
MO1C3 Development of a 6D Electron Beam Diagnostics Suite for Novel Acceleration Experiments at FEBE on CLARA 1
 
  • T.H. Pacey, D. Angal-Kalinin, A.R. Bainbridge, J. Henderson, J.K. Jones, N.Y. Joshi, S.L. Mathisen, A.E. Pollard, Y.M. Saveliev, E.W. Snedden, C. Tollervey, D.A. Walsh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D. Angal-Kalinin, A.R. Bainbridge, J.K. Jones, T.J. Overton, Y.M. Saveliev, C. Swain, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J. Henderson
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • N.Y. Joshi
    UMAN, Manchester, United Kingdom
  • T.J. Overton
    The University of Manchester, Manchester, United Kingdom
  • C. Swain, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
 
  The FEBE beamline at the CLARA facility will combine a 250 MeV FEL quality electron beam with a 100 TW class laser. One area of research FEBE will support is novel acceleration schemes; both structure and plasma based. There are stringent diagnostic requirements for measuring the input electron beam and challenges in characterisation of the accelerated beams produced by these novel schemes. Several of these challenges include measurement of: micrometer scale transverse profiles, 10 fs scale bunch lengths, single shot emittance, broadband energy spectra at high resolution, and laser-electron time of arrival jitter. Furthermore, novel shot-by-shot non-invasive diagnostics are required for machine learning driven optimisation and feedback systems. This paper presents an overview of R&D activities in support of developing a 6D diagnostics suite to meet these challenges.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides MO1C3 [3.008 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MO1C3  
About • Received ※ 07 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 13 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP32 Analog Front End for Measuring 1 to 250 pC Bunch Charge at CLARA 117
 
  • S.L. Mathisen, T.H. Pacey, R.J. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  As part of the development of the CLARA electron accelerator at Daresbury Laboratory, a new analog front end for bunch charge measurement has been developed to provide accurate measurements across a wide range of operating charges with repetition rates of up to 400 Hz. The qualification tests of the front end are presented. These include tests of the online calibration system, compared to a bench Faraday cup test setup; online beam test data with a Faraday cup from 1 to 200 pC; online beam test data with a wall current monitor from 1 to 200 pC, and tests using signal processing such as singular value decomposition. This is demonstrated to enable the measurement of bunch charges in the order of 100 fC using both Faraday Cups and Wall Current Monitors.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP32  
About • Received ※ 07 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 09 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)