Author: Jalali, B.
Paper Title Page
TH1C3 Single-Shot Electro-Optic Detection of Bunch Shapes and THz Pulses: Fundamental Temporal Resolution Limitations and Cures Using the DEOS Strategy 536
 
  • C. Szwaj, S. Bielawski, C. Evain, E. Roussel
    PhLAM/CERLA, Villeneuve d’Ascq, France
  • C. Gerth, B. Steffen
    DESY, Hamburg, Germany
  • B. Jalali
    UCLA, Los Angeles, California, USA
 
  Funding: ULTRASYNC ANR-DFG project, CPER Photonics for Society, CEMPI LABEX
Recording electric field evolutions in single-shot and with sub-picosecond resolution is required in electron bunch diagnostics, and THz applications. A popular strategy consists of transferring the unknown electric field shape onto a chirped laser pulse, which is eventually analyzed. The technique has been investigated and/or been used as routine diagnostics at FELIX, DESY, PSI, Eu-XFEL, KARA, SOLEIL, etc. However fundamental time-resolution limitations have been strongly limiting the potential of these methods. We review recent results on a strategy designed for overcoming this limit: DEOS [1] (Diversity Electro-Optic Sampling). A special experimental design enables to reconstruct numerically the input electric signal with unprecedented temporal resolution. As a result, 200 fs temporal resolution over more than 10 ps recording length could be obtained at European XFEL - a performance that could not be realized using classical spectrally-decoded electro-optic detection. Although DEOS uses a radically novel conceptual approach, its implementation requires few hardware modifications of currently operating chirped pulse electro-optic detection systems.
[1] E. Roussel, C.
Szwaj, C. Evain, B. Steffen, C. Gerth, B. Jalali and S. Bielawski,
Light: Science & Applications 11, 14 (2022).
https://www.nature.com/articles/s41377-021-00696-2
 
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides TH1C3 [5.198 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TH1C3  
About • Received ※ 27 August 2022 — Accepted ※ 15 September 2022 — Issue date ※ 17 November 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)