Author: Henares, J.L.
Paper Title Page
TU3C2 Angular-Resolved Thomson Parabola Spectrometer for Laser-Driven Ion Accelerators 352
 
  • C. Salgado-López, A. Curcio, G. Gatti, J.L. Henares, J. Imanol Apiñaniz, J.A.P. Pérez-Hernández, L. Volpe, D. de Luis
    CLPU, Villamayor, Spain
 
  Funding: LASERLAB-EUROPE V (Grant Agreement No. 871124, EU Horizon 2020). IMPULSE (Grant Agreement No. 871161, EU Horizon 2020). Equipment Grant No. EQC2018-005230-P, Junta de CyL (Grant No. CLP263P20).
Laser-plasma driven accelerators have become reliable sources of low-emittance, broadband and multi-species ion sources, with cut-off energies above the MeV-level*. We report on the development, construction, and experimental test of an angle resolved Thomson parabola spectrometer for laser-accelerated multi-MeV ion beams able to distinguish between ionic species with different q/m ratio. The angular resolving power, which is achieved due to an array of entrance pinholes, can be simply adjusted by modifying the geometry of the experiment and/or the pinhole array itself. The analysis procedure allows for different ion traces to cross on the detector plane, which greatly enhances the flexibility and capabilities of the detector. A full characterization of the TP magnetic field has been implemented into a relativistic code developed for the trajectory calculation of each beamlet. High repetition rate compatibility is guaranteed by the use of a MCP as active particle detector. We describe the first test of the spectrometer at the 1PW VEGA 3 laser facility at CLPU, Salamanca (Spain), where up to 15MeV protons and carbon ions from a 3-micron laser-irradiated metallic foil are detected**.
*A. Macchi et. al., Rev. Mod. Phys. 85, 751 (2013)
**C. Salgado et. al., Sensors 22, 3239 (2022).
 
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides TU3C2 [2.831 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TU3C2  
About • Received ※ 01 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 14 September 2022 — Issue date ※ 25 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)