Author: Bogataj, L.
Paper Title Page
WEP08 Upgrade of the BPM Long Term Drift Stabilization Scheme Based on External Crossbar Switching at PETRA III 395
 
  • G. Kube, F. Schmidt-Föhre, K. Wittenburg
    DESY, Hamburg, Germany
  • A. Bardorfer, L. Bogataj, M. Cargnelutti, P. Leban, M.O. Oblak, P. Paglovec, B. Repič
    I-Tech, Solkan, Slovenia
 
  PETRA IV at DESY will be an upgrade of the present synchrotron radiation source PETRA III into an ultra low-emittance source with beam emittance of about 20 pm.rad which imposes stringent requirements on the machine stability. In order to measure beam positions and control orbit stability to the required level of accuracy, a high resolution BPM system will be installed which consists of about 800 monitors with the readout electronics based on MTCA.4. In order to fulfill the requested long-term drift requirement (< 1 micron over 7 days), also the BPM cable paths have to be stabilized because of the PETRA-specific machine geometry. To achieve this, the crossbar switching concept was extended such that the analogue switching part is separated from the read-out electronics and brought as close as possible to the BPM pickup. While first measurements were presented before, meanwhile the system has undergone a major revision, especially the external switching matrix changed from a prototype setup to a system close to the final design. This contribution summarizes the latest measurements from PETRA III, demonstrating the high performance of the external stabilization concept.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP08  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 18 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP09 Preliminary Evaluation of the MTCA.4 BPM Electronics Prototype for the PETRA IV Project 399
 
  • P. Leban, A. Bardorfer, L. Bogataj, M. Cargnelutti, M.O. Oblak, P. Paglovec, B. Repič
    I-Tech, Solkan, Slovenia
  • G. Kube, F. Schmidt-Föhre, K. Wittenburg
    DESY, Hamburg, Germany
 
  Within the PETRA IV project at DESY, the synchrotron radiation source PETRA III will be upgraded into a low-emittance source. The small beam emittance and reduced beam size imply stringent requirements on the machine stability. To meet the requirements on position measurement and orbit stability, a high-resolution BPM system will be installed in the new machine, with about 800 BPMs and MTCA.4-based readout electronics. In the TDR phase of the project, I-Tech and DESY are cooperating on the realization of a BPM prototype that will demonstrate the feasibility of reaching the PETRA IV requirements. Several analog, digital and SW parts are taken from the Libera Brilliance+ instrument and are reused in the MTCA.4 BPM prototype, with some innovations. One of them is the separation of the RF switch matrix used for long-term stabilization: placing it near the BPM enables also the long RF cables to be stabilized. An 8 channel RTM board, able to acquire signals from two BPMs was developed and is also tested. This paper presents an overview of the BPM electronics prototype and the promising test results achieved in the Instrumentation Technologies’ laboratory with the first boards produced.  
poster icon Poster WEP09 [3.499 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP09  
About • Received ※ 01 September 2022 — Revised ※ 11 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 23 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)