JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for TUP39: Neural Network Inverse Models for Implicit Optics Tuning in the AGS to RHIC Transfer Line

@inproceedings{edelen:ibic2022-tup39,
  author       = {J.P. Edelen and K.A. Brown and N.M. Cook and J.A. Einstein-Curtis and V. Schoefer},
  title        = {{Neural Network Inverse Models for Implicit Optics Tuning in the AGS to RHIC Transfer Line}},
& booktitle    = {Proc. IBIC'22},
  booktitle    = {Proc. 11th Int. Beam Instrum. Conf. (IBIC'22)},
  pages        = {327--330},
  eid          = {TUP39},
  language     = {english},
  keywords     = {quadrupole, network, diagnostics, operation, controls},
  venue        = {Kraków, Poland},
  series       = {International Beam Instrumentation Conference},
  number       = {11},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {12},
  year         = {2022},
  issn         = {2673-5350},
  isbn         = {978-3-95450-241-7},
  doi          = {10.18429/JACoW-IBIC2022-TUP39},
  url          = {https://jacow.org/ibic2022/papers/tup39.pdf},
  abstract     = {{One of the fundamental challenges of using machine-learning-based inverse models for optics tuning in accelerators, particularly transfer lines, is the degenerate nature of the magnet settings and beam envelope functions. Moreover, it is challenging, if not impossible, to train a neural network to compute correct quadrupole settings from a given set of measurements due to the limited number of diagnostics available in operational beamlines. However, models that relate BPM readings to corrector settings are more forgiving, and have seen significant success as a benchmark for machine learning inverse models. We recently demonstrated that when comparing predicted corrector settings to actual corrector settings from a BPM inverse model, the model error can be related to errors in quadrupole settings. In this paper, we expand on that effort by incorporating inverse model errors as an optimization tool to correct for optics errors in a beamline. We present a toy model using a FODO lattice and then demonstrate the use of this technique for optics corrections in the AGS to RHIC transfer line at BNL.}},
}