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Abstract
The European Spallation Source, currently under con-

struction in Lund, Sweden, will be the world’s most powerful
neutron source. It is driven by a proton linac with a current
of 62.5 mA, 2.86 ms long pulses at 14 Hz. The final section
of its normal-conducting front-end consists of a 39 m long
drift tube linac (DTL) divided into five tanks, designed to
accelerate the proton beam from 3.6 MeV to 90 MeV. The
high beam current and power impose challenges to the de-
sign and tuning of the machine and the RF amplitude and
phase have to be set within 1% and 1◦ of the design values.
The usual method used to define the RF set-point is signa-
ture matching, which can be a challenging process, and new
techniques to meet the growing complexity of accelerator
facilities are highly desirable. In this paper we study the use
of ML to determine the RF optimum amplitude and phase,
using a single pass of the beam through the ESS DTL1 tank.
This novel method is compared with the more established
methods using scans over RF phase, providing similar re-
sults in terms of accuracy for simulated data with errors. We
also discuss the results and future extension of the method
to the whole ESS DTL.

INTRODUCTION
The European Spallation Source (ESS) is a state of the

art neutron science facility under construction in Lund, Swe-
den [1]. The basic process used by the facility is spallation,
wherein one impinges a high neutron material, in this case
Tungsten, with high energy protons, causing the target to
shed excess neutrons. The high energy protons are provided
by the ESS linear accelerator (linac), a 600 m long acceler-
ator consisting of many different sections utilizing varied
accelerator technologies in order to raise the proton energy
from the 75 keV source output to the final 2.0 GeV arriving
on the target. A crucial part of this machine is the 39 m long
drift tube linac (DTL) divided into five tanks, designed to
accelerate the proton beam from 3.6 MeV to 90 MeV. As
the machine is expected to deliver beam of high current and
power, a primary concern is to avoid slow beam losses, as
these lead to radiation activation of surrounding equipment.
In order to avoid such losses, proper and careful tuning of the
RF fields is crucial. As a result the requirement for accuracy
of the RF set point is to be within 1% in RF amplitude and
1◦ in phase [1]. In order to achieve this type of accuracy,
much work has been performed in the last decades to develop
new techniques to meet the growing scale and complexity
of facilities [2–4]. Within this paper we will investigate how
Machine Learning (ML) may serve this purpose. This paper
presents our current strides in the development of a tuning
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technique using ML, with simulated data used in such a
way that a single pass through the untuned cavity could be
sufficient for setting it up.

RF TUNING

RF Phase Scan
In order to be able to quantify how the beam responds

to changes to the RF set-point, a diagnostic sensitive to the
beam time of flight through the cavity must be used. For
those cases a Beam Position Monitor (BPM) can be used.
As the beam passes a BPM both the amplitude and phase of
the fields excited on the BPM sensor by the passing beam
are recorded. Although this phase alone doesn’t hold much
usable information for cavity tuning, by comparing two BPM
phases we can get a fast measurement which is proportional
to the time-of-flight, or looking with respect to acceleration
in a RF cavity, the energy gain between the two devices. It
is important to stress that this measurement is relative and
that extracting the absolute values of the energy is not an
easy task. For this technique, using only the relative phase
changes has proven to be enough [2–4].

The BPMs are used to measure the energy gain (or time-of
flight) as a function of the set points in the accelerating cavity.
As the BPM’s measured phase is closely dependent on the
energy of the beam, scanning RF amplitude and phase in a
cavity and plotting out the resulting phase differences will
give rise to different curves depending on the proximity to the
ideal set point for the cavity. A few of these signature curves
can be seen in Fig. 1, where the ideal set point can be found
from the signature for the ideal amplitude 𝐴0 = 6.89 kV, the
ideal input beam energy 𝐸0 = 3.62 MeV and the -35◦ phase
set point.

Figure 1: The phase curves for different RF amplitude and
input energy set points. BPM phases simulated as compar-
ison between two BPMs in the first DTL tank in the ESS
linac.
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Identifying these types of signatures is the basis of most
established techniques for cavity tuning [2–4]. We are sug-
gesting a new type of identifiable signature for this type of
tuning, which could be measured in a single pass through
the cavity, rather than requiring scanning over a parameter,
described in more detail in the following section.

Single Shot Measurement
RF phase scans are an established and reliable method for

extracting the information needed to achieve good tuning,
and with a more limited diagnostic output it is the only option
available for now. However, with the large number of BPMs
within the ESS DTL section, a restructuring of the data can
be done such that we can see distinct signatures for each
cavity setpoint in amplitude, phase and beam input energy.
We look at BPM phase differences, not against RF phase,
but against each diagnostic output, the pairing of BPMs.
Figure 2 shows an example of this type of plot, where each
line represents a cavity set point and is measured in a single
pass through the machine, without scanning any parameter.
From here we encounter the same problem to be solved
as with the phase scan data, needing to accurately identify
these new signatures. The nature of the signatures in this
data format leaves ML uniquely equipped for the task.

If accurate predictions can be made with this data format, a
few new advantages manifest. Being able to tune the machine
acceptably with a single shot could cut down set up times.
One would also not require to determine a range for the
scanned parameters as in more traditional RF tuning [2,3]
but would in principle reload the last machine state with
good settings and run a single verification pulse.

Figure 2: BPM phase differences for each possible BPM
coupling, with the different plots each corresponding to a
single cavity set point.

Simulations
OpenXAL was used to simulate the first tank of the ESS

DTL during acceleration and to reproduce the signals from
the six BPMs inside the DTL tank 1 [5, 6]. As phase differ-
ence is the data of interest, this results in 15 different BPM
combinations, each combination producing one data point
for each cavity set point, in RF amplitude and phase and
input beam energy. ML requires large amounts of data for

training networks and for this purpose an error free dataset
was used. This consisted of 110 different amplitude set
points, with a variation of ±5.5% around the design RF cav-
ity amplitude 𝐴0, 60 different input beam energy set points,
with a variation of ±1.5% around the design input energy
𝐸0, and 55 different phase set points, spread evenly around
the -35◦ design set point.

To this perfect machine four different types of errors were
then applied. BPM longitudinal position within the ma-
chine was adjusted, potentially caused by installation and
construction, as well as the phase readout from these BPMs,
produced by electronic limitations. There are also errors
arising from production limitations when constructing the
cavities. Such limitations could give rise to errors in both
RF amplitude and phase gap-to-gap. The different types of
errors and their magnitudes are summarized in Table 1.

Table 1: The Different Types of Errors Used in Simulations
and Their Corresponding Magnitude

Error Type Magnitude
BPM Δs ±100 µm
BPM Δ𝜙 ±1◦
RF Amplitude ±2%
RF Phase ±0.5◦

MACHINE LEARNING
Machine learning algorithms come in many forms and can

solve many distinct problems using varying network struc-
tures, definitions of loss and optimization algorithms [7].
The problem we are looking at in this project involves reduc-
ing larger scans of data down to three dependent variables,
RF amplitude, RF phase and input beam energy. We com-
pare two types of network, a traditional linear regression
structure, and a newer decision tree boosting model called
XGBoost.

Linear Regression Network
This network was defined using the python library

Keras [8]. The library comes with predefined versions of
our loss function, mean squared error, and our optimiza-
tion algorithm, ADAM. ADAM has different coefficients
which may be tuned to improve the networks performance,
although the learning rate is most relevant [9]. Optimiza-
tion of the network structure and training parameters was
done iteratively, looking at generalized performance as the
figure of merit. This was quantified as the loss on a subset
of data separated during training. Through this process we
arrived at a 10-layer structure with an 160-160-80-80-40
symmetrical neural layout, and a final output layer of three
neurons. This was trained for 20 000 epochs with a learn-
ing rate of 0.00001. This network was used to produce the
results presented in the following section.
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Table 2: Three standard deviations in difference between predicted and correct values for the RF Amplitude and phase and
the input energy. Results shown for both linear regression (LR) and XGBoost (XGB) network structures.

Data Set 3𝜎𝐴 [%] 3𝜎𝜙 [◦] 3𝜎𝐸 [%] 𝜇𝐴 [%] 𝜇𝜙 [◦] 𝜇𝐸 [%]

No Errors LR 0.075 0.051 0.045 0.002 0.000 0.002
XGB 0.891 1.755 0.153 0.025 -0.013 0.002

All Errors LR 4.002 5.568 0.804 -0.013 -0.068 -0.009
XGB 3.171 5.217 0.750 0.022 0.038 0.016

XGBoost

The modern ML system of XGBoost (eXtreme Gradient
Boosting) is an open source gradient boosting model, which
has proven extremely powerful for solving varied, nonlin-
ear problems [10]. Gradient boosting tree models such as
this are based on the decision tree model of network struc-
tures, with a regularized objective function. In a decision
tree ML system, the parameters adjusted in training are not
the weighted connections within a network of nodes, but
rather the branching criteria in a large decision tree. A gradi-
ent boosting ML system uses an ensemble of many decision
trees in order to improve the final predictions, and commonly
a regularized loss function which penalises increasing com-
plexity of the model as well as the usual error of predictions.
This regularized loss is then applied to the ensemble of trees
iteratively to improve the output by training the branching
criteria.

For the results produced here an ensemble of 10000 trees
was used, each with a max allowed depth, the amount of
branching criteria, of 20. A learning rate factor of 0.0001
was applied and an early stopping system was also used
during training, forcing the training to halt if the generalized
performance of the ensemble network did not improve over
a period of 500 iterations.

RESULTS

Table 2 shows three standard deviations (3𝜎) and the
mean (𝜇) of the difference between the predicted and ex-
pected value for the RF Amplitude (𝐴) and phase (𝜙), as
well as for the input energy (𝐸). The low mean in all rows
shows there is little to no systematic offset to the predictions.
We see both types of network performing within the given
limits on the training data set, although we do see higher
standard deviation from the XGBoost training. However,
it is generalized performance on the realistic error data set
which presents the more relevant figure of merit. Here we
see good performance in the energy predictions, but both
methods fail to produce the sought results in both phase and
amplitude. XGBoost only slightly outperforms the more
traditional linear regressor, but remains far outside the limit
in the phase prediction. The variation in the single shot
signatures as a function of phase is quite small, so networks
struggling to distinguish between these is understandable.

OUTLOOK
While both methods may fail the limits for operation at

this stage of investigation, there are still many factors which
could prove this method more reliable than suggested by
these results. The error data set produced may have been
pessimistic in the predictions of one or many of the factors
included. Further optimization of the meta parameters for
the training of the networks could reveal better results in
the future. New data sets could be produced with more
distinguished patterns arising from difference in RF phase.

Furthermore, even if this technique would prove unable
to produce the sought results for initial cavity tuning, the
1◦ and 1% error in RF phase and amplitude predictions, it
does not render it useless. The single shot nature of the data
could allow for updated tuning information during operation
of the machine, as well as long term tracking of drifts on the
RF parameters. Also, the data available for each set point
increases rapidly with added diagnostics. Applying this
single shot data to the full ESS DTL section would include
more BPM combinations, and the increase in available data
could perhaps be sufficient to improve the method to within
the restrictions. Further applications of this online tuning
information could be developed in the future, for use in the
ESS control room or elsewhere.
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