Photoinjector Driver Laser Temporal Shaping and Diagnostics for Shanghai Soft X Ray Free Electron Laser

🚺 СМРЕЛ

WEPP25

Chunlei Li^{1, 2}, Xingtao Wang¹, Wenyan Zhang¹, Lie Feng¹ and Bo liu¹⁺ ¹ Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China ² Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, China [†] Corresponding author: liubo@zjlab.org.cn

Abstract

- intensity distribution infulence Driver laser electron bunch character (emittance, longitudinal structure).
- Flattop beam produced from α -BBO stacking is more benefit for producing electron beam with lower emittance, but significantly increase the microbunch instability effect on copper cathode.

- α -BBO stacking was designed for producing \bullet flattop UV laser beam. UV grating pair shaping was designed for reducing the mircobunch effect.
- cross-correlation pulses method for Two characterization the laser pulse temporal structure are also presented.

Figure 1: Schematic of SXFEL Driver laser system.

UV Laser Pulse BBO stacking

UV Grating Pair Shaping

5 0.02 Delay [ps] **BBO** stacking

-15 Delay [ps] Grating pair shaping

Figure 5: UV laser pulse cross-correlation measurement

Results and discussions

Figure 3: Principle of grating pair shaping Group delay dispersion (GDD):

Second order dispersion has the strongest influence on

the pulse duration.

$$\text{GDD} = \frac{d^2 \phi}{d\omega^2} = \frac{m^2 \lambda^3 L_g}{2\pi c^2} \times \left[1 - \left(-m\frac{\lambda}{\Lambda} - \sin\theta_i \right)^2 \right]^{-3/2}$$

m-diffraction order (usually -1);

 λ -center wavelength;

the initial pulse length τ_0

 L_{g} - distance between the two parallel gratings; Λ -period of the grating;

For given GDD, dispersed pulse length τ is related to

 θ_i - angle of incidence on the first grating.

 $\tau = \tau_0 \left| 1 + \left(\frac{GDD \cdot 4\ln(2)}{\tau_0^2} \right)^2 \right|$

Figure 2: BBO stacking for SXFEL photoinjector. Thicknees of BBO L_1 =4.3306mm, L_2 =2.1653mm, L₃=1.0826mm.

The temporal separation (Δt) between o beam and e beam when they propagate through the BBO birefringence crystal.

 $\Delta t = L * GVM$ Group velocity mismatch: GVM = $\Delta (v_g^{-1})_{cc} = \frac{1}{V_g^o} - \frac{1}{V_a^e}$ $v_{g} = \frac{c}{n} \left(1 + \frac{\lambda}{n} \frac{dn}{d\lambda} \right)$

Figure 6: Electron beam temporal structure measured at transverse deflection cavity

Summary

- 1. Design of drive laser system for SXFEL and investigate UV pulse temporal shaping technique based on BBO stacking method and UV grating pair shaping.
- 2. Electron beam microbunching instability was significantly reduced using UV grating pair shaping.
- 3. Further investigation will attempt to characterize the microbunching instability based on different cathode material and shaping methods.

References

10ps/266nm

UV-Grating

stretcher

[1] S. Bettoni et al., "Impact of laser stacking and photocathode materials on microbunching instability in photoninjectors", Physical Review Accelerators and Beams, 23, 024401, 2020. [2] M.B. Danailov et al., "Laser Systems for Next Generation Light Sources", Proceedings of PAC2009, Vancouver, BC, Canada, pp.122-126, 2009.

Group velocity:

Group refraction indices for two different polarization:

Sellmeier equations:

$$n_{o}(\lambda) = \sqrt{2.7405 + \frac{0.0184}{\lambda^{2} - 0.0179} - 0.0155\lambda^{2}}$$
$$n_{e}(\lambda) = \sqrt{2.3730 + \frac{0.0128}{\lambda^{2} - 0.0156} - 0.0044\lambda^{2}}$$

Figure 4: UV grating pair shaping of SXFEL Driver laser.

UV grating pair stretcher	
Grating lines/mm	3846
Incident angle	30°
Input pulse duration	100fs
Output pulse duration	10ps
Grating separation	230mm
material	Fused silica

[3] C. P. Hauri and R. Ganter., "Gun Laser Systems for the SwissFEL Project", Proceedings of FEL2009, Liverpool, UK, pp.157-160, 2009.

[4] John G. Power and Chunguang Jing "Temporal Laser Pulse Shaping for RF Photocathode Guns: The Cheap and Easy way using UV Birefringent Crystals", Advanced Accelerator Concepts: 13th Workshop. pp.689, 2009.

[5] Lixin Yan et al., "UV Pulse Trains by α -BBO Crystal Stacking for the production of THz rap rate electron Bunches", J. Plasma Physics, Vol.78, part 4, 2012, pp.429-431.

[6] Bahaa E.A. Saleh, and Malvin Carl Teich, "Fundamentals of Photonics", Second Edition, Boston Univeristy, pp: 220-221, 2007.

[7] Eugene Hecht, "Optics, Fourth Edition", Adelphi University, pp: 296-298, 2002. [8] A. V. Smith, "How to select nonlinear crystals and model their performance using SNLO software", Proc. SPIE 3928, Nonlinear Materials, Devices, and Applications, 2000. [9] http://toolbox.lightcon.com/tools/gratingpair/

Acknowledgments

The authors would like to thank M.B. Danailov for construction discussion and lend us UV grating pair, Guorong Wu and his group in Dalian coherent light source for fruitful discussions providing the PMT device. This work was sponsored by Shanghai Sailing Program (18YF1428700).