Enhancement of the S-DALINAC Control System with Machine Learning Methods*

J. Hanten[#], M. Arnold, J. Birkhan, C. Caliari, N. Pietralla, M. Steinhorst

*Work supported by DFG through GRK 2128

S-DALINAC

Motivation

Before every beam time:

Providing an electron beam optimized in terms of position, size, transmission and energy resolution at the experimental sites

→ beam setup

Motivation

Before every beam time:

Providing an electron beam optimized in terms of position, size, transmission and energy resolution at the experimental sites

→ beam setup

Motivation

Before every beam time:

Providing an electron beam optimized in terms of position, size, transmission and energy resolution at the experimental sites

→ beam setup

Idea:

PV: Process Variable

Use current machine learning achievements and make the beam setup a reinforcement learning task

Beam Setup

Beam Setup

Beam Setup

Challenges

Previously optimal set points do not always provide the same beam settings and quality after restore

- → Possible loss of beam quality e.g. 30 keV energy resolution at the spectrometer, instead of 10 keV
- \rightarrow New adjustment needed \rightarrow loss of time
 - + few days up to weeks

Challenges

Previously optimal set points do not always provide the same beam settings and quality after restore

- $\rightarrow\,$ Possible loss of beam quality e.g. 30 keV energy resolution at the spectrometer, instead of 10 keV
- \rightarrow New adjustment needed \rightarrow loss of time
 - + few days up to weeks

A possible explanation for deviation in the set points

- \rightarrow Temperature fluctuations in the environment
- \rightarrow Resulting e.g. in slightly different properties of rf cables

 $\rightarrow \dots$

Reinforcement Learning

Software *agents* take *actions* in a *state* of the *environment* to maximize cumulative *reward*

$$R_t \coloneqq \sum_{i=t}^{T} \gamma^{(i-t)} r\left(s_i, a_i\right), \ \gamma \in [0, 1]$$

Return for time step t \rightarrow discounted sum of rewards r until termination

$$Q^*(s,a) \coloneqq \max_{\pi} \mathbb{E}\left[R_t | s_t = s, a_t = a, \pi\right]$$

Optimal action-value function \rightarrow expected return for best policy

Reinforcement Learning

Software *agents* take *actions* in a *state* of the *environment* to maximize cumulative *reward*

$$R_t \coloneqq \sum_{i=t}^{T} \gamma^{(i-t)} r\left(s_i, a_i\right), \ \gamma \in [0, 1]$$

Return for time step t \rightarrow discounted sum of rewards r until termination

$$Q^*(s, a) \coloneqq \max_{\pi} \mathbb{E}\left[\left| R_t \right| s_t = s, a_t = a, \pi \right]$$

Optimal action-value function \rightarrow expected return for best policy

Goal of DQN-Algorithm: Estimate this function

Bellman Equation

- Bellman equation allows to approximate the action value function iteratively: "learning"
- For continuous state space NN is needed as function approximator \rightarrow DQN
- Limitation of DQN: Action space still discrete

Reinforcement learning method

based on finding optimal action-value function $Q^*(s, a)$

• Agent changes magnet set point (Action)

Reinforcement learning method

based on finding optimal action-value function $Q^*(s, a)$

- Agent changes magnet set point (Action)
- AreaDetector gets values from target
- Reward is calculated
- State is evaluated

Reinforcement learning method

based on finding optimal action-value function $Q^*(s, a)$

- Agent changes magnet set point (Action)
- AreaDetector gets values from target
- Reward is calculated
- State is evaluated

Reinforcement learning method

based on finding optimal action-value function $Q^*(s, a)$

- Agent changes magnet set point (Action)
- AreaDetector gets values from target
- Reward is calculated
- State is evaluated
- NN gives next Q
- New Q for this state/action pair is calculated
- NN is trained with this value

Q-Network

- Each connection has weight w and each neuron has bias b
- Activation function $\sigma \left(\vec{w} \cdot \vec{x} + b \right)$ with activition vector \vec{x}

Q-Network

- Initial magnet deflection angle and destination point chosen randomly
- beam coordinates absolute and relative to destination, current magnet deflection → 6 input neurons
- · Reward proportional to reduction of distance to destination

Tested with three different action spaces:

 $A_4 = \{-5 \operatorname{mrad}, 5 \operatorname{mrad}\}^2$ $A_9 = \{-5 \,\mathrm{mrad}, 0 \,\mathrm{mrad}, 5 \,\mathrm{mrad}\}^2$ $A_{25} = \{-10 \,\mathrm{mrad}, -1 \,\mathrm{mrad}, 0 \,\mathrm{mrad}, 1 \,\mathrm{mrad}, 10 \,\mathrm{mrad}\}^2$

Max 50 steps per episode

11.09.2019 | Jan Hanten | TU Darmstadt | AG Pietralla | S-DALINAC Machine Learning

 $1 \text{ mrad} \triangleq 0.15 \text{ mm}$

Learning Curve

Mean return in last 10 episodes

Performance of Trained Networks

TECHNISCHE UNIVERSITÄT DARMSTADT

Performance benchmark after training

Conclusion and Outlook

- DQN was able to learn in a simple test case
- discretization will be problematic with higher number of elements
 → Action space grows exponentially

- Deep deterministic policy gradient (DDPG) might be a solution
- Continuous action space possible
- Test of RL-algorithms with more complex simulation scenarios
- Test at operation

Thank you for your attention!

Goals

globally and reproducibly optimized settings per experiment compensation of temporal fluctuations due to environmental influences

Autonomous beam optimization

 Reinforcement learning with artificial neural networks (NN) (e.g. Deep-Q-Networks DQN) Correlation study of process variables using methods of data mining

- → Transfer entropy
- Singular value decomposition

Goals

globally and reproducibly optimized settings per experiment compensation of temporal fluctuations due to environmental influences

Autonomous beam optimization

 Reinforcement learning with artificial neural networks (NN) (e.g. Deep-Q-Networks DQN) Correlation study of process variables using methods of data mining

- → Transfer entropy
- Singular value decomposition

ELU vs. ReLU

NN Training

$$\begin{split} R &= \left| r_{\text{target}} - r_{\text{before}} \right| - \left| r_{\text{target}} - r_{\text{after}} \right| \\ L_t \left(\theta_t \right) &= \begin{cases} \frac{1}{2} \left(y_t - Q\left(s_t, a_t; \theta_i\right) \right)^2 & \text{for } |y_t - Q\left(s_t, a_t; \theta_i\right)| < 1 \\ |y_t - Q\left(s_t, a_t; \theta_i\right)| - 0.5 & \text{otherwise} \end{cases} \\ \\ b_k &\to b_k - \eta \frac{\partial C}{\partial b_k} \\ \\ w_k &\to w_k - \eta \frac{\partial C}{\partial w_k} \end{split}$$

DDPG

Correlation Analysis of Process Variables (Cryoplant)

Correlation Analysis of Process Variables (Cryoplant)

