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S-DALINAC
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Before every beam time:
Providing an electron beam optimized in terms of position, size, transmission and 
energy resolution at the experimental sites  

 beam setup➜

Motivation
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Before every beam time:
Providing an electron beam optimized in terms of position, size, transmission and 
energy resolution at the experimental sites  

 beam setup➜

Motivation

...
Power supplies 371+  (controlling + monitoring) 
Cameras 60+    (monitoring)
Targets 60+    (controlling + monitoring)
...
------------------------------
 Total PVs    3300+   very large parameter space➜
------------------------------

PV: Process Variable
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Before every beam time:
Providing an electron beam optimized in terms of position, size, transmission and 
energy resolution at the experimental sites  

 beam setup➜

Motivation

...
Power supplies 371+  (controlling + monitoring) 
Cameras 60+    (monitoring)
Targets 60+    (controlling + monitoring)
...
------------------------------
 Total PVs    3300+   very large parameter space➜
------------------------------

Idea:
Use current machine learning achievements and make the beam setup a 
reinforcement learning task  

PV: Process Variable
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setup of the beam position via optical targets
beam

Adjustment by variation ΔI
n
 of 

currents 

Beam Setup
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Previously optimal set points ​​do not always provide the same beam settings 
and quality after restore

→ Possible loss of beam quality
     e.g. 30 keV energy resolution at the spectrometer, instead of 10 keV

→ New adjustment needed ➜ loss of time
    + few days up to weeks

Challenges
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Previously optimal set points ​​do not always provide the same beam settings 
and quality after restore

→ Possible loss of beam quality
     e.g. 30 keV energy resolution at the spectrometer, instead of 10 keV

→ New adjustment needed ➜ loss of time
    + few days up to weeks

A possible explanation for deviation in the set points

→ Temperature fluctuations in the environment

→ Resulting e.g. in slightly different properties of rf cables 

→...
 

Challenges
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Reinforcement Learning

Software agents take actions in a state of the 
environment to maximize cumulative reward

Optimal action-value function  expected return for best policy ➜

Return for time step t  discounted sum of rewards r until termination ➜
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Reinforcement Learning

Software agents take actions in a state of the 
environment to maximize cumulative reward

Optimal action-value function  expected return for best policy ➜

Return for time step t  discounted sum of rewards r until termination ➜

Goal of DQN-Algorithm: Estimate this function 
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Bellman Equation

updated Q-value for 
state/action pair (s, a)

reward for last action

discount factor

Q-value for the best action in the 
next state (provided by NN)

● Bellman equation allows to approximate the action value function iteratively: 
“learning”

● For continuous state space NN is needed as function approximator  DQN➜

● Limitation of DQN: Action space still discrete 
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Deep-Q-Network-Algorithm

● Agent changes magnet set point 
(Action)

Reinforcement learning method

based on finding optimal action-value function 
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Deep-Q-Network-Algorithm

● Agent changes magnet set point 
(Action)

● AreaDetector gets values from target

● Reward is calculated

● State is evaluated  

Reinforcement learning method

based on finding optimal action-value function 
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Deep-Q-Network-Algorithm

● Agent changes magnet set point 
(Action)

● AreaDetector gets values from target

● Reward is calculated

● State is evaluated  

● NN gives next Q

● New Q for this state/action pair is 
calculated

● NN is trained with this value

Reinforcement learning method

based on finding optimal action-value function 
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Q-Network

Environment Diagnostics

Beam Diagnostics

Beam Manipulation Devices

Inputs
e.g.

Input layer hidden layer
one or more

weights

Output

weights

Q-values for this Action

● Each connection has weight w and each neuron has bias b

● Activation function                      with activition vector
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Q-Network

Environment Diagnostics

Beam Diagnostics

Beam Manipulation Devices

Inputs
e.g.

Input layer hidden layer
one or more

weights

Output

weights

Q-values for this Action
Agent

current Q-values

new Q-value
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First Test of DQN-Algorithm with elegant

● Initial magnet deflection angle and destination point chosen randomly 

● beam coordinates absolute and relative to destination, current magnet deflection  ➜ 6 input 
neurons

● Reward proportional to reduction of distance to destination

electron scource

beam

x/y-corrector magnet
15 cm

target
r = 15 mm 
destination area: 5 mm



11.09.2019  | Jan Hanten | TU Darmstadt | AG Pietralla | S-DALINAC Machine Learning 21

First Test of DQN-Algorithm with elegant

Tested with three different action spaces:

                                                                                1 mrad  0.15 mm≙

Max 50 steps per episode

electron scource

beam

x/y-corrector magnet
15 cm

target
r = 15 mm 
destination area: 5 mm
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Learning Curve

return = sum of rewards during 
episode

reward/approach = 1/mm

reward for reaching goal = 10

reward for leaving target = -10

   = 0.25

Mean return in last 10 episodes
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Performance of Trained Networks

50 test episodes with trained 
network

failed: escape from target   

aborted: not at destination within 50 
steps

Performance benchmark after training
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Conclusion and Outlook

● DQN was able to learn in a simple test case 

● discretization will be problematic with higher number of elements 
 ➜ Action space grows exponentially

● Deep deterministic policy gradient (DDPG) might be a solution

● Continuous action space possible

● Test of RL-algorithms with more complex simulation scenarios

● Test at operation
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Thank you for your attention!
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Correlation study of process 
variables using methods of data 
mining

➔ Transfer entropy

➔ Singular value decomposition
 

globally and reproducibly 
optimized settings per 

experiment

compensation of temporal 
fluctuations due to 

environmental influences

Autonomous beam optimization 

➔ Reinforcement learning with   
artificial neural networks (NN)  
(e.g. Deep-Q-Networks DQN)

Goals
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ELU vs. ReLU

Exponential Linear Unit Rectified Linear Unit
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NN Training
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DDPG
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Correlation Analysis of Process Variables 
(Cryoplant)  

Correlation diagram of one 
beam time

Scheme of the cryoplant
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Pressure test cryostat (mbar)
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Correlation Analysis of Process Variables 
(Cryoplant)  

Scheme of the cryoplant

LHe at 2K
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