DEVELOPMENT OF THE CALCULATION METHOD OF INJECTION BEAM TRAJECTORY OF RIKEN AVF CYCLOTRON WITH 4D EMIT-TANCE MEASURED BY THE DEVELOPED PEPPER-POT EMITTANCE

 the unverstriof ofoki

Y. Kotaka ${ }^{\dagger}$, Y. Ohshiro, H. Yamaguchi, N. Imai, S. Sakemi,S. Shimoura, Center for Nuclear Study, University of Tokyo, Wako, Japan
T. Nagatomo, J. Ohnishi, T. Nakagawa, M. Kase,A. Goto, Riken Nishina Center, Wako, Japan
K. Hatanaka, Research Center for Nuclear Physics, Osaka University, Ibaraki, Japan
H. Muto, Suwa University of Science, Chino, Japan

Developing beam trajectory calculation method EOM of solenoid coil $\frac{d^{2} x}{d s^{2}}=-2 g \frac{d y}{d s}-\frac{d g}{d s} y$ $\frac{d^{2} y}{d s^{2}}=2 g \frac{d x}{d s}+\frac{d g}{d s} x \quad \mathrm{~g}=\frac{1 q}{2} \cdot \underline{p} \cdot B_{s}$ Magnetic field calculated by FEMM EOM of quadrupole $\frac{d^{2} x}{d s^{2}}=-k x$
$\frac{d^{2} y}{d s^{2}}=k y \quad k=\frac{q}{p} \cdot \frac{B_{x}}{d y}=\frac{q}{p} \cdot \frac{B_{y}}{d x}$ Magnetic field calculated by TOSCA 3 D EOM of dipole $\mathrm{m} \frac{d^{2} \vec{r}}{d t^{2}}=\mathrm{q}(\vec{v} \times \vec{B})$
$\vec{r}=(X, Y, Z) \quad \vec{v}=\frac{d \vec{r}}{d t} \quad \vec{B}=\left(B_{X}, B_{Y}, B_{Z}\right)$
Magnetic field calculated by TOSCA 3D

Two models for Space charge effect Measurement

Single-ellipse Approximate by one ellipse Black ellipse $\times 1.8$

Optimizing camera lens condition (1)choose $\mathbf{2 2 5}$ fiducial points at 5 mm interval in $\mathbf{7 0 \times 7 0} \mathrm{mm}^{2}$ (2)give real positions in the beam line to fiducial points (3)measure bitmap position of the fiducial points on the digital image (4)transform the bitmap coordinates to the fiducial points coordinates using the projective transform coefficient
(5)difference between fiducial points and their transformed position \rightarrow distortion.

The distortion result from lens condition

GigE camera+lens (Tamron 13VM308AS)
lens condition : focal length 8 mm object distance 250 mm \rightarrow image resolution $0.8 \mathrm{~mm} /$ pixel $\mathrm{SDx}=0.06 \mathrm{~mm}$ Sdy $=0.07 \mathrm{~mm}$ \rightarrow angle resolution $\sim 2 \mathrm{mrad}$ (if flight length is 55 mm)

Comparison between
Include and exclude Space charge effect

Beam Trajectory calculation

Beam Trajectory calculation - exclude space charge

Evaluation method

- Compare Beam Trajectory calculation with other diagnostic measurement
- Quantifying the degree of fit by $\mathbf{x 2 / D O F}$
$\chi^{2}=\Sigma(\mathrm{Ci}-\mathrm{Mi})^{2} / \sigma^{2}$
$\sigma=10 \%$ of highest value of Measurement
normalizing area to 1
For 2D distribution, make projection to arbitrary coordinate

Beam test for the evaluation

Test beam	Ion	E (kev)	Intensity(erA)
	$1{ }^{4}{ }^{4} \mathrm{He}^{2+}$	15.4	124
	${ }_{2}^{2}{ }_{3}^{2 \mathrm{H}^{2+2}}$	12.64	100
	$4{ }^{4} \mathrm{He}^{2+}$	15.4	308
	$5{ }^{4 \mathrm{He}^{2+}}$	15.4	187

The degree of fit by comparing with EM_I36

The degree of fit by comparing with PF_I36
(107.5 mm behind EM_136)
all the degree of fit < 4.2
\rightarrow not so large as the degree of fit of angle of EM_I36 (possible cause)
the measured angle of EM_I36 may be fault. They contain noise because the zero level of signal becomes uneven by secondary electrons made from beam.

The degree of fit by various exposure time and gain of digital camera and 2 kinds of thickness of KBr

Conclusion

- The improved PEM and developed beam trajectory calculation method can be used in practical way.
- we can start the 2nd step
- Moreover, examine the degree of fit of various ion species, beam intensity, and energy to see

