

Transverse Emittance Measurement of a 2.5 MeV Proton Beam on LIPAc, IFMIF's Prototype

CEA Saclay, France: J. Marroncle, B. Bolzon, P. Abbon, T. Chaminade, N. Chauvin, S. Chel, J.F. Denis, A. Gaget, CIEMAT Madrid, Spain: J.M. Garcia, D. Jimenez-Rey, A. Rodriguez (from ESS Bilbao), A. Ros, V. Villamayor, F4E Garching: H. Dzitko, D. Gex, A. Jokinen, A. Marqueta (presently at ITER Cadarache), IFMIF Project Team Rokkasho, Japan: P. Cara,

INFN Legnaro, Italy: L. Bellan, M. Comunian, E. Fagotti, F. Grespan, A. Pisent, F. Scantamburlo, QST Rokkasho, Japan: T. Akagi, K. Kondo, M. Sugimoto.

Abstract

Beam commissioning of LIPAc accelerator at Rokkasho is in progress. This poster reports about emittance measurement of a 2.5 MeV proton beam using slits, steerers and a SEM grids. Attention is withdrawn on the following subjects:

- Profile measurement with the SEM grids and the secondary emission current
- Emittance measurement analysis and comparison beam dynamics simulations

Profile measurement

Secondary emission current:

 \rightarrow Rule of thumb tells that only electron/ion pairs created in the superficial layer (1 nm) of the wire contribute to the current...

Proton 2.5 MeV, 24 mA, $\Delta t = 800 \ \mu s/s$, $\sigma \sim 15 \ mm$

• SRIM $\rightarrow \Delta E/\Delta x \sim 100 \text{ eV/nm}$

- Electron binding energy ~ 25 eV
- Expectation: if incident proton crosses the wire
 - \rightarrow 4 electrons / proton
- Measure \rightarrow 2.26 electrons / proton!

Emittance measurement

0 1 20 HM

equiv.

wire

area

 $\pi \phi/4 = 15.7 \mu m$

Deuteron 5 MeV, 118 mA, $\Delta t = 200 \ \mu s/s$, $\sigma \sim 17.5 \ mm$

SRIM

- range of D⁺ in tungsten ~ 43 μ m >> Ø_{wire}
- $\Delta E_{W} = 1.4 \text{ MeV}$
- $\Delta E/\Delta x = 89 \text{ eV/nm}$
- \rightarrow 89/25 = **3.6** electrons / deuteron

Profile measurement

 \rightarrow 3.3 electrons / incident deuteron

Conclusion: the rule of thumb may be really convenient for sizing electronics.

Measurement	1	2	3	4
SOL1 [A]	135	135	135	131
SOL2 [A]	160	160	162	162
V _{RFQ} [kV]	66	62	70	70
Norm. ε _{exp} / ε _{sim}	0.24 /	0.24 /	0.22 /	0.24 /
[π mm mrad]	0.24	0.24	0.23	0.28
β _{exp} / β _{sim}	7.1/	8.0 /	6.6 /	6.5 /
[mm/π mrad]	7.5	8.1	6.3	6.0
α _{exp} / α _{sim}	-4.8 /	-5.4 /	-4.3 /	-4.4 /
	-5.5	-6.0	-4.3	-4.5

- Final analysis (Fig. b): intensity below a certain threshold (10) is considered as background, and therefore removed. dependent of this threshold since the
- \rightarrow The integrating capacitors of the RO will minimizing this effect, for the next beam campaign.

Results and simulation comparisons

- Really nice agreement for vertical emittance between measurements and beam dynamics simulations, except for point 4 (the latter will be investigated with simulations and post analysis).
- Agreements are also acceptable for the deduced Twiss parameters.

¹ D. Uriot, and N. Pichoff, "Status of Tracewin code", in Proc. IPAC'15, Richmond, VA, USA, 2015.

contacts: benoit.bolzon@cea.fr & jacques.marroncle@cea.fr