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Abstract

Cameras can be a very useful accelerator diagnostic, par-
ticularly because an image of the beam distribution can be
quickly interpreted by human operators, and increasingly
can serve as an input to machine learning algorithms. We
present an implementation of digital cameras for triggered
photon diagnostics at the Advanced Photon Source using the
areaDetector framework in the Experimental Physics and
Industrial Controls System. Beam size measurements from
the synchrotron light monitors in the Particle Accumulator
Ring using the new architecture are presented.

INTRODUCTION

Measuring the beam size of the high brightness beams
produced by the Advanced Photon Source Upgrade (APS-U)
will be accomplished with cameras at various points in the
acceleration cycle [1,2]. The existing Advanced Photon
Source (APS) has many cameras used to image the electron
beam throughout the accelerator complex. Image output
from most cameras is National Television System Committee
(NTSC) analogue video, from which individual frames are
acquired using a DataCube Max Video MV200 system [3,4].
In many other laboratories, digital cameras are used as part
of the suite of accelerator diagnostics [5-9]. In anticipation
of future capabilities for data acquisition and control of im-
age data, potential need of a digital camera architecture is
foreseen.

In the present work, we highlight recent work integrat-
ing digital camera control and data acquisition in the APS
control system. Graphical and programmatic interface tools
are outlined. A demonstration of digital camera use for the
collection of beam physics data is presented.

SYSTEM ARCHITECTURE

We have deployed several digital cameras. At present the
cameras used are FLIR Point Grey Research Grasshopper3
USB3 cameras. USB3 was selected for these locations be-
cause the communication protocol supports high frame rate
output. The cameras are directly connected to soft input out-
put controllers (IOCs) running on local personal computers.

We use areaDetector to interface with the cameras [10,11].
The areaDetector package is used primarily as an Experi-
mental Physics and Industrial Control System (EPICS) in-
terface [12—15]. In addition, areaDetector modules provide
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initial data processing and analysis before publication as
process variables.

For timing synchronisation, the cameras are externally
triggered. For a variable delay, we use a digital delay gener-
ator (Stanford Research System DG645) triggered from the
timing system injection event.

GRAPHICAL USER INTERFACE

A Python-based graphical user interface (GUI) has been
developed. This makes use of the pvaPy Python module for
PV access. An example image of the GUI is shown in Fig. 1.
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Figure 1: Python graphical user interface for digital cameras
controlled by areaDetector.

PROGRAMMATIC INTERFACE

For programmatic access to digital camera data, a Self-
Describing Data Sets (SDDS) function was written called
sddsimagemonitor [16, 17]. The function provides similar
functionality to sddswmonitor, optimised for cameras con-
trolled through areaDetector.

Using sddsimagemonitor we were able to acquire im-
ages using channel access protocol at a high throughput
of about 100 frames per second when the region of interest
was cropped to 128 x 128 pixels. This may be useful for
specific time-resolved studies.

EXAMPLE OF USE

We have used this system successfully to image the elec-
tron beam in the Particle Accumulator Ring (PAR) [18] and
in the Booster Synchrotron [19] of the APS accelerator com-
plex. An example of the electron beam size measured using
the PAR synchrotron light monitor is illustrated in Fig. 2.

One nice feature of the digital cameras is the 12-bit ana-
logue to digital converter. This allowed the acquisition of
all eight images in Fig. 2 on the same intensity scale, with-
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g Figure 2: Transverse profiles of electron beam distribution acquired with digital camera at the PAR. (a) t = 0.55 ms.
z Immediately after the first injection of charge from the linac. (b) # = 8.2 ms. Damping of first injection of charge from the
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”g beam distribution is damping. (e) = 37 ms. Immediately after the second injection into the damping ring. (f) # = 64 ms.
i Immediately before the third injection into the damping ring. (g) + = 70 ms. Immediately after the third injection into the
f damping ring. (h) ¢+ = 455 ms. After several injections into the damping ring and the transverse emittance has damped to
S equilibrium.
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CONCLUSION

We have demonstrated an implementation of digital cam-
eras for control and data acquisition of the APS accelerators.
Camera data acquisition and controlled are handled using
areaDetector and EPICS. A demonstration of functionality
provided by digital cameras in contrast to analogue cameras
is given for the electron beam size transverse damping in the
PAR damping ring.
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