

A NANOFABRICATED WIRESCANNER: DESIGN, FABRICATION AND FIRST EXPERIMENTAL RESULTS

M.Veronese

on behalf of:

M. Ferianis, S.Grulja, G.Penco (FERMI, ELETTRA)

L.Froehlich (DESY)

S.Dal Zilio, S.Greco*, M.Lazzarino (IOM CNR)

*also at Graduate School of Nanotechnology, University of Trieste

M.Veronese

IBIC17

Grand Rapids, USA,

23 August 2017

Outline

Introduction

- Conceptual design
- Simulations
- Nanofabrication

Experimental results

FERMI FEL at Elettra - Sincrotrone Trieste (Italy)

IBIC17

EXPERIMENT AT FERMI

MAIN DUMP

WIRESCANNERS @ FERMI

- No wirescanner installed in FERMI up to 2015
- First experience with commissioning of PSI wirescanner* in LINAC.
 Very positive and stimulating.

Desiderata for new WSC in undulator hall:

- system online: running while the FEL is operative
- installed just before modulator undulator
- compact and delivering negligible dose to undulators downstream

IDEA: Low Z nanofabricated wires (NF wires)

Long standing collaboration with nanofabrication lab of IOM CNR

*G.Orlandi et.al. PRSTAB, 19, 092802, (2016)

M.Veronese

IBIC17

Grand Rapids, USA,

23 August 2017

NANOFABRICATED WIRES

What is Nanofabrication ?

 \rightarrow lithography + etching protocols on semiconducting substrates

Starting point: silicon wafer coated with silicon nitride (SiN)

RESULT: A 10x15mm device with an aperture bridged by wires

Advantages:

- Low Z, Low density material + Low thickness: 0.5-2 μm
 → Low dose → negligible de-magnetization of undulators
- With lithography the wires width can be very small : \rightarrow 0.5 μ m
 - \rightarrow Potentially high resolution is achievable

Device Nanofabrication

Mask + classical UV photolithography \rightarrow One side \rightarrow aperture Other side \rightarrow wire pattern

Wet etching \rightarrow reproduce patter on Cr thin film used as mask for dry ICP-Reactive ion etching to remove unwanted SiN

Finally remove all Si with KOH wet etchant

• 4.5 μm wire not visible in the picture

Grand Rapids, USA,

WIRES vs NF-WIRES

Traditional wires are made of: tungsten, aluminum, carbon (CERN, SLAC/DESY/PSI)

NF wires are made of: Silicon Nitride (SiN)*:

 \rightarrow Low Z, Low density, hard, high tensile strength

Traditional wires \rightarrow circular cross section \rightarrow resolution= diameter/4

NF wires \rightarrow rectangular cross section \rightarrow width/ $\sqrt{12}$ ~width/3.5

Traditional wires minimum diameter ~ 5 μ m

NF wires can be made 0.5 μ m micron wide (wire robustness limit)

→ σ=0.5/3.5=0.144 µm !!

* Stoichiometry is complex and related to stress level Grand Rapids, USA, 23 August 2017 8

M.Veronese

IBIC17

NF WIRE STRUCTURE

Our device has 3 layers:

SiN NF wires with size $2\mu m \times 10\mu m$ (thickness x width) + Ag coating on both sides.

Two side coating balance stress and improve signal.

MATERIALS AND IONIZING DOSE

If we consider only bremsstrahlung

The dose is: proportional to Z^2 , proportional to ρ (density)

Element	Z	ρ [gcm -3]
Tungsten	74	19.3
Aluminum	13	2.7
Silicon	14	2.3
SiN	12.5*	3

* Effective atomic number

Device	Normalized dose approximation	Normalized dose FLUKA
Tungsten Wire 10 μm	929	175
Aluminum Wire 5 μm	1	1
NF wire SiN 2 μm x 10 μm	0.8	0.95
NF wire (0.5 μ m Ag / 2 μ m SiN / 0.5 μ m Ag) x 10 μ m	26.7	7.5

SIMULATIONS with **FLUKA**

 Electrons produce main dose (not photons)

Ultrathin wires \rightarrow low cross section

Low cross section \rightarrow low divergence Low divergence of dose \rightarrow < 1mrad

→Distance wire / maximum of dose ~10 meters (vacuum chamber diam.)

Grand Rapids, USA,

23 August 2017

EXPERIMENTAL LAYOUT ON FERMI FEL1

• Dose detectors from MPS:

Cherenkov fibers + MPPC detector + 250Ms/s 12bit adc
 Cherenkov fiber spool + MPPC detector + 250Ms/s 12bit adc
 Ionization chamber + picoammeter

 High resolution Imaging scintillating screen: YAG:Ce with COTR immune geometry

SIGNALS FROM CHERENKOV FIBERS ON FERMI FEL1

SIGNALS FROM IONIZATION CHAMBERS ON FERMI FEL1

IC6 shows higher signal \rightarrow closer to dose maximum position

HIGH RESOLUTION SCREEN

NF WIRE vs HIGH RESOLUTION SCREEN

CONCLUSIONS & PERSPECTIVES

NF wires successfully built & tested with beam on FERMI

Lessons Learned:

- > Metallic coating should be done both sides to avoid stresses and wire breaking
- > Best suited for small beam sizes <100 μ m \rightarrow high brightness and E>~100MeV
- Main technological limit is the vertical aperture <= 5mm</p>
- Halos or wakefields may affect SNR

FUTURE GOALS:

To fabricated a new device for both X and Y measurements

To improve SNR (bulk scintillator, PMT) to better operate with thin wires

To test resolution limits with much smaller beams

Thank you for your attention!

Grand Rapids, USA,