INTERNATIONAL BEAM INSTRUMENTATION CONFERENCE

Grand Rapids, Michigan, USA 20-24 August 2017

Review of Beam-Based Techniques of Impedance Measurement

Victor Smaluk

NSLS-II

Wake Fields and Impedances

Wake function: point charge (δ -function) response

$$W_{\parallel}(\tau) = -\frac{1}{q} \int_{-\infty}^{\infty} E_{z}(t,\tau) dt, \qquad \mathbf{W}_{\perp}(\tau) = \frac{1}{qr} \int_{-\infty}^{\infty} [\mathbf{E}(t,\tau) + \mathbf{v} \times \mathbf{B}(t,\tau)]_{\perp} dt \qquad \qquad \mathbf{v} = c\tau \qquad \mathbf{v} = \mathbf{v} = c\tau \qquad \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v} \qquad \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v} \qquad \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v} \qquad \mathbf{v} = \mathbf{v}$$

Wake potential: $\lambda(t)$ beam response $V(\tau) = \int_{0}^{\infty} W(t)\lambda(\tau - t)dt$ **Impedance**: frequency-domain transfer function

$$Z(\omega) = \int_{-\infty}^{\infty} W(t) e^{-i\omega t} dt \qquad \qquad Z(\omega) = \frac{\widetilde{V}(\omega)}{\widetilde{\lambda}(\omega)}$$

Longitudinal Broad-band Impedance

What Can We Measure?

Single-bunch effects are dependent on integral parameters combining the impedance Z_{\parallel} and the bunch power spectrum *h*:

Effective impedance

Loss factor

 $h(\omega) = \widetilde{\lambda}(\omega)\widetilde{\lambda}^{*}(\omega)$ is the bunch power spectrum $h(\omega) = e^{-\omega^2 \sigma_t^2}$ for Gaussian bunch

Measurable effects

- bunch lengthening
- energy spread growth (microwave instability)

- coherent energy loss (heat load)
- synchronous phase shift

Longitudinal Impedance Models

Bunch Lengthening

Haissinski equation

J.Haissinski, Nuovo Cimento 18, 1 (1973)

$$\lambda(t) = K\lambda_0(t) \exp\left[-\frac{lpha I_b}{\omega_s^2 \sigma_0^2 E/e} \int_{-\infty}^t S(t+\tau)\lambda(\tau) d\tau\right]$$

 $\lambda_0(t) = \frac{1}{\sqrt{2\pi\sigma_0}} \exp\left(-\frac{t^2}{2\sigma_0^2}\right)$

$$S(t) = \int_0^t W_{\parallel}(\tau) \mathrm{d}\tau$$

3-rd order equation for r.m.s. bunch length

B.Zotter, CERN SPS/81-14 (DI), 1981

$$\left(\frac{\sigma_z}{\sigma_{z0}}\right)^3 - \frac{\sigma_z}{\sigma_{z0}} = \frac{\alpha I_b \operatorname{Im}(Z/n)_{eff}}{\pi v_s^2 E/e} \left(\frac{R}{\sigma_{z0}}\right)^3$$

Instrumentation:

- streak camera
- dissector tube
- button-type BPM (indirect, via bunch spectrum width)

National Synchrotron

NATIONAL LABORATORY Light Source II

5

Coherent Energy Loss

Current-dependent shift of synchronous phase

Reference bunch technique

Instrumentation:

 $\Delta \phi_s = \frac{I_b k_{\parallel}}{f_0 V_{\rm rf} \cos \phi_s}$

- streak camera
- dissector tube
- **RF** system diagnostics

Current-dependent dispersive orbit distortion

400

350

250

200

0

100

200

x (pix)

y (pix) 300

J.P.Koutchouk, CERN LEP- TH/89-2, 1989

$$\Delta x(z) \approx D(z) \frac{\Delta I_b}{f_0(E/e)} \int_{z_0}^z k'_{\parallel}(\zeta) d\zeta$$

Instrumentation: $k_{\parallel} = \frac{f_0}{\Delta I_b} \frac{E}{e} \frac{\Delta x(z)}{D(z)}$

Instrumentation:

ENERGY

beam position monitors

Office of

Science

PRSTAB 6 030703 (2003) Horizontal 600 500 200400 100 300 퇵 0 200 着 -100Vertical - 100 -2000 -300 280-4002602400 50 220 100150 200 I_{b} , mA 200 180 250 z. m

Grand Rapids, MI

20-24 Aug 2017

 $\Delta x, \mu m$

Beam-based Impedance Model

Resistive-wall impedance

IBIC 17

Energy Spread – Microwave Instability

Measurement & simulation

NAPAC-2016 TUPOB51

 $\sigma_{x}^{2} = \beta_{x} \varepsilon_{x} + (\eta_{x} \delta)^{2}$ $\delta = \sigma_E / E$

Software:

SPACE code: Vlasov-Fokker-Planck equation solver

PRAB 19, 024401 (2016)

Instrumentation:

- pin-hole X-ray camera
- synchrotron light monitor

20

25

30

National Synchrotron

Light Source II

Transverse Broad-band Impedance

What Can We Measure?

Single-bunch effects are dependent on integral parameters combining the impedance Z_{\perp} and the bunch power spectrum h:

Effective impedance

Kick factor

$$k_{\perp} = \int_{-\infty}^{\infty} V_{\perp}(t)\lambda(t)dt =$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} Z_{\perp}(\omega)h(\omega)d\omega$$

 $h(\omega) = \widetilde{\lambda}(\omega)\widetilde{\lambda}^{*}(\omega)$ is the bunch power spectrum $h(\omega) = e^{-\omega^2 \sigma_t^2}$ for Gaussian bunch

Measurable effects

- coherent betatron tune shift
- chromatic head-tail damping

orbit distortion by local impedance

Transverse Impedance Models

Complex Frequency Shift

Eigenvalue problem for head-tail modes:

$$\det\left[\left(\frac{\Delta\Omega_{\beta}}{\omega_{s}}-l\right)\mathbf{I}-\mathbf{M}\right]=0$$

$$M_{kk'} = \frac{I_{b}}{2\omega_{s} E/e} \sum_{i} \beta_{i} \int_{-\infty}^{\infty} Z_{\perp i}(\omega) g_{lk}(\omega-\omega_{\xi}) g_{lk'}(\omega-\omega_{\xi}) d\omega$$

$$g_{lk}(\omega) = \frac{(-1)^{|l|}}{\sqrt{2\pi k! (|l|+k)!}} \left(\frac{\omega\sigma_{t}}{\sqrt{2}}\right)^{|l|+2k} e^{-\frac{\omega^{2}\sigma_{t}^{2}}{2}}$$

(for Gaussian bunch)

Linear approximation:

if
$$\Delta v_{\beta} \ll v_{s}$$
 $\Delta v_{\beta} = -\frac{I_{b}}{2\omega_{0} E/e} \sum_{i} \beta_{i} k_{\perp i}$
if $\frac{\xi \sigma_{z}}{\alpha R} \ll 1$ $\tau_{\xi}^{-1} = \frac{\xi \omega_{0}}{2\pi \alpha E/e} I_{b} \sum_{i} \beta_{i} \operatorname{Re} Z_{\perp i}$

Instrumentation:

beam position monitors

Grand Rapids, MI

20-24 Aug 2017

National Synchrotron Light Source II

Beam-based Impedance Model

Resistive-wall impedance

Science

ONAL LABORATORY Light Source II

Measurement of Local Impedance

Orbit bump method

<u>DIPAC-1999 PT19,</u> <u>NIM A 525 (2004) 433–438</u>

IBIC 17

$$\Delta x' = rac{q}{E/e} k_{\perp} x$$
 wakefield kick

Current-dependent orbit distortion

Instrumentation:

• beam position monitors

Grand Rapids, MI

ENERGY Office of Science

200 100 Δy (μm) -100-20050 100 150 0 200 250 300 350 s (m) Diamond: $\Delta y \sim 2 \mu m$ PRSTAB 17, 074402 (2014) Δy (μm) 0 100 200 300 400 500 s (m) NSLS-II: $\Delta y \sim 0.2 \mu m$ <u>NIM A A 871 (2017) 59–62</u> New technique: AC local bump model — meas 0.5 Δy (μm) -0.5100 200 300 500 600 700 0 400 s (m)

National Synchrotron

NATIONAL LABORATORY Light Source II

VEPP-4M: Δ*y* ~ 100μm *EPAC-1998 THP09F*

20-24 Aug 2017

Measurement of Local Impedance

Movable elements (variable impedance)

Instrumentation:

beam position monitors

NSLS-II scraper: tune shift, reference bunch technique IBIC2016 TUCL02

20-24 Aug 2017

Transverse Narrow-band Impedance

Multi-bunch instability

- resistive-wall impedance
- resonance modes .

Science

IBIC 17

rising/damping time Diamond Light Source <u>IPAC2016 TUPOR013</u>

 $\tau_n^{-1} = \operatorname{Im} \Delta \Omega_n$ $\Delta\Omega_n = -\frac{i}{4\pi} \frac{\omega_0 \overline{\beta}}{E/e} I \sum_{n=-\infty}^{\infty} Z_{\perp}(\omega_{pn}) h(\omega_{pn})$ **-**²

$$\omega_{pn} = (pN_b + n + v_\beta)\omega_0 \qquad h(\omega) = e^{-\omega^2 \sigma}$$

Instrumentation:

bunch-by-bunch feedback system

20-24 Aug 2017

National Synchrotron ATIONAL LABORATORY Light Source II

Summary

Impedance	Measurable effects	Instrumentation
longitudinal broad-band impedance	 bunch lengthening 	 streak camera
	 synchronous phase shift 	 dissector tube
	dispersive orbit distortion	 RF system diagnostics
	 energy spread growth (microwave instability) 	 beam position monitors
		 pin-hole X-ray camera
		 synchrotron light monitor
transverse broad-band impedance	• coherent betatron tune shift	 beam position monitors
	 chromatic head-tail damping 	 pinger
	 orbit distortion (bump method) 	
transverse narrow- band impedance	 mode rising/damping times of transverse coupled- bunch instability 	 bunch-by-bunch feedback system

20-24 Aug 2017

INTERNATIONAL BEAM INSTRUMENTATION CONFERENCE

Grand Rapids, Michigan, USA 20-24 August 2017

Thank you for your attention!

