

A New Beam Loss Monitor Concept Based on Fast Neutrons Detection and Very Low Photon Sensitivity

IBIC 2016 at Barcelona (Spain) September 13th, 2016

J. Marroncle, T. Papaevangelou, L. Segui, G. Tsiledakis, A. Delbart, D. Desforge, C. Lahonde-Hamdoun, P. Legou DSM/Irfu, CEA Saclay

Overview

Why new BLM? Micromegas in few words nBLM simulations Summary

Why new BLM?

high beam intensity hadron accelerator facilities like LIPAc (125 mA cw D⁺), ESS (62.5 mA 4% dc H⁺)...

Beam Dynamics Physicists^{1,2} tuning recommendations

Minimize the beam losses (safety, maintenance hands-on...)

 \rightarrow Emittance will growth: "halo matching"

Note that is unlike classical beam for which emittance is minimized: "emittance matching"

 \succ Measure the Beam Losses quite accurately \rightarrow important

Beam loss locations

Low beam energy

- Neutrons and γ 's as primary and/or secondary
- Low rates since close to the reaction thresholds
- background: electron emissions emitted from RFQ or superconductive cavities where huge surface electric field are applied → X-rays and γ's

High beam energy

- All particles, including charged ones
- Higher signal (IC regime)

¹ Nicolas Chauvin, "Beam dynamics Challenges in IFMIF", HB2016, TUAM2Y01.

² P.A.P. Nghiem et al., "The IFMIF-EVEDA challenges in beam dynamics and their treatment", Nucl. Instrum. Meth. Phys. Res. A 654, 63–71.

nBLM

Focus on Low Energy \rightarrow neutrons and γ 's

- ➢ Requirements
 - 1- avoid $\boldsymbol{\gamma}$ and X-rays contributions from cavity emissions
 - 2- directionality \rightarrow good correlation beam loss location / detection
 - 3- reasonable efficiency
 - 4- good time response for Safety
- 1- Avoid $\boldsymbol{\gamma}$ contributions from cavity emissions
 - \rightarrow BLM **blind** to X-rays and $\gamma 's$
- 2- Directionality or good correlation beam loss location / detection
 - → thermal neutrons: they may be thermalized by rebounds on concrete accelerator wall, on beam line structures... losing their location emission: **thermal neutron should be avoided**
 - \rightarrow fast neutrons: directly detected from loss location, high sensitivity
- 3, 4- Reasonable efficiency and good time response for Safety
 - \rightarrow selecting detector structures

neutron BLM (nBLM), based on Micromegas detectors

- > fast neutron high efficiency, but low for thermal
- \succ Blind to X-rays and γ 's

- Micromegas: Multi-Pattern Gaseous Detector, invented in 1995 at CEA Saclay¹
- Parallel plate detector with a strengthened thin mesh dividing the gas volume in 2 parts:
 - drift region (1 to 10 mm) \rightarrow E \approx 100 V/mm
 - amplification region (30 to 100 μ m) \rightarrow E \approx 10000 V/mm
- Grounded read-out: conductive strips connected to FEE
- Pillars are used to reinforce the response uniformity

Lot of improvements, evolutions can be done on Micromegas and by changing their parameters (gaps, gas,

electric potential, read-out...). It can achieved:

- high fluxes greater than 10^8 counts/cm²/s
- spatial resolutions down to 50 μm
- time resolution down to 30 ps

Cylindrical shape are now working routinely,

large surface area (>1 m²) can be covered

Resistive bulk technologies allow now to reduce drastically spark effects, decreasing dead time \rightarrow BLM

¹ Y. Giomataris, P. Rebourgeard, J.P. Robert and G. Charpak, "Micromegas: A high-granularity position sensitive gaseous detector for high particle-flux environments", Nuc. Instrum. Meth. A 376 (1996) 29.

nBLM simulations

- Cadmium (1 mm)
- Aluminum foil (50 μm)
- -- Al micromesh
- 🗕 B₄C (2 μm)
- He₂ or N₂ gas

nBLM geometry

- Cadmium envelop
 - to absorb the incident thermal neutrons
- Polyethylene moderator
 - to thermalize the incident fast-neutrons → varying thickness allows to adjust the energy threshold
 - to absorb the remaining incident thermal neutrons

Double Micromegas

- to increase the neutron detection efficiency with B_4C thin films (~1.5 2 $\mu m)$
- gas: He (≈ 1.1 bar) or N₂, Ne...
 He is better for photon discrimination

This geometry was simulated using FLUKA¹ and GEANT 4² codes to check the compliance with the requirements

¹G. Battistoni et al., The FLUKA code: Description and Benchmarking, in Proc. AIP Conf. Proc. 03, vol. 896, 2007, pp.31. <u>http://dx.doi.org/10.1063/1.2720459</u>.
 ²GEANT Collaboration, S. Agostinelli et al., GEANT4-a sim-ulation toolkit, NIM A 509 (2003) 250.

> Hypothesis for FLUKA & GEANT 4 codes

- Neutrons: double exponential distribution for energy ranging from 0.1 eV to 100 MeV
- Photons: double exponential distribution from 10 keV to 100 MeV
- Withdrawing is done upstream and transversely to the nBLM entrance window in a volume filled with air
- angular divergence of 10 mrad for incident neutrons
- Codes: calculate the energy deposition in the gas

Checked: results obtained with both codes are similar!

nBLM efficiency to fast neutrons

Moderator thickness

- 2, 4 and 6 cm
- Threshold energy = 10 keV
- Overall efficiency for 4 cm \rightarrow 3.8%
- Moderator thickness can be used to change slightly the neutron energy threshold as well as the shape

Contribution of all neutrons under 0.2 eV is suppressed

• Thermal neutrons are almost removed

nBLM response to external "thermal" neutrons 0.01 < E_{neutron} (eV) < 1

> Thermal neutrons with respect to detection thresholds:

- 10 keV → Eff. < 0.007 %
- 30 keV \rightarrow nBLM is blind to external thermal neutrons
- Background: γ contributions coming from ¹¹⁴Cd and ¹⁰B neutron are taken into account, but almost completely removed with low detection thresholds.

nBLM response to X-rays and γ 0.01 < E_{photon} (MeV) < 100

> Photons with respect to detection thresholds:

- 10 keV → Eff. < 0.0062 %
- 20 keV \rightarrow nBLM almost blind to photons

Note: Micromegas use small amount of material, explaining their transparency to photons (low RL)

angular and time responses of nBLM

- nBLM angular response
 - quite low effect due to neutron slowing down inside moderator
 - this behavior let us expect a nBLM efficiency greater than the active surface of Micromegas

- nBLM time response
 - only 17% of events are detected during the 10 first μs, while they are all after 300 μs!
 - due to neutron moderation time
 - might be too slow for safety purposes
 - ➔ Proposition to add a fast stage of BLM

Fast nBLM

Fast nBLM geometry

 1 mm Al + 2 mm polypropylene will be enough to be quite insensitive to thermal neutron
 thin Al (50 nm) coating on polypropylene to polarize the Micromegas and to insure a high transparent to recoil protons.

 Working principle: detection of recoil protons produced in polypropylene

Time response of the fast nBLM 0.1 < E_{neutron} (MeV) < 100

- Time response (Th=10 keV) < 8 ns</p>
- Fast neutron (Th=10 keV) → low efficiency
 - for $E_{neut.} = 1 \text{ MeV} \rightarrow \text{Eff.} = 3 \text{ } 10^{-4}$
 - for $E_{neut.}$ = 10 MeV \rightarrow Eff. = 8 10⁻⁴
- ➤ Thermal neutrons: E=0.025 eV
 - Thres. = 1 keV \rightarrow Eff. = 6.6 10⁻⁵
 - Thres. = 5 keV \rightarrow Eff. = 5.8 10⁻⁶
 - Thres. = 10 keV \rightarrow Eff. < 5 10⁻⁷

Note: this fast-BLM is just in case of very critical events → huge neutron emission!

Energy response of the fast nBLM

Very good photon/neutrons discrimination

• Threshold around 10 – 20 keV is enough to remove photon contributions

Experimental and simulation responses

- Experimental data using a Micromegas detector with one B₄C plate, placed on top of a polyethylene box with a ²⁵²Cf neutron source
- Quite good agreement between ²⁵²Cf source and FLUKA simulation code

Future

Simulations are still in progress

- Prototype design will follow, as well as tests
 - neutrons
 - thermal: close to reactor
 - fast: facility like Licorne at Orsay (0.5 to 4 MeV)
 - γ's and X-rays
 - robustness, reliability, radiation hardness...
 - gas choice
 - fast and low noise FEE
 - sealed mode... already tested but need to be checked
- Foreseen to built 35 such nBLM stations for ESS, in the 3.6 to 90 MeV accelerator part
- Another nBLMs implementation is under study...

Conclusion / Summary

New kind of BLM based on Micromegas detector was simulated, exhibiting the following specifications

- good sensitivity to fast neutrons \rightarrow overall efficiency $\approx 4\%$
- "blind" to thermal neutrons \rightarrow directionality
- "blind" to X-rays and γ 's \rightarrow to avoid cavity photon emissions
- fast BLM component \rightarrow t < 8 ns
- big neutron signal deposit (due to moderation) allows to count neutrons individually
- devoted to low energy part of beam line of high intensity accelerator facilities

Future: design prototypes and test them with real neutrons and photons before to proceed to nBLM production for ESS.

Thanks a lot for your attention

thanks to the organizers for the invitation thanks to all my Saclay's colleagues, and also to I. Dolenc-Kittelmann & T. Shea from ESS for their fruitful discussions about BLM