LCLS-1 Cavity BPM Algorithm for NATIONAL ACCELERATOR **Unlocked Digitizer Clock** LABORATORY T. Straumann, S. Smith, SLAC, Menlo Park, USA TUOG10

Introd	

Fig. 1 shows a typical cavity BPM. Transversal beam displacement excites the dipole mode in a "position" cavity. The monopole mode in a "reference" cavity provides a reference signal for amplitude (beam-charge) and phase.

TOA Estimation

The Problem

In order to eliminate the phase error we need to estimate the "Time of Arrival" (TOA).

Figure 4 shows the measured signal out of a LCLS reference cavity for two beam pulses. The effect of the unlocked clock is obvious.

Synchronous detection is used to determine the position ("*Re{pos phasor/ref phasor}*"):

- Suppression of quadrature signal caused by slanted trajectory or bunch.
- Better SNR for beam close to center.
- "Sign" of position comes for free.

The detector uses the phase of the reference cavity to establish a "time-scale".

The idea is as follows:

- We use a known "test" or "template" function (blue dots in Fig. 3).
- We have a measured set of samples (red dots in Fig. 3).
- We want to estimate by how much we have to shift the red set in time to match the blue one.
- Tricky: the time-shift is not an integer number of samples.

Approach to Solution

How can we describe our problem?

 \rightarrow look at the *correlation* between template (x_i) and measured data (s_i):

 $R(\tau) = \sum x_i s_i(\tau) \rightarrow \max$

The zoomed area shows more detail. It can be seen that the time-difference is not a multiple of an integer sampling interval.

The TOA estimation was then applied to the signals and they were time-aligned to the test function (using a FFT) – see Fig. 5. (The amplitude was also normalized for this plot.)

Fig. 2 shows a typical receiver. RF signals are down-mixed and digitized. Since phase information is critical the position- and reference channels must use the same LO and ADC clock (only one axis of x/y shown).

If the ADC clock is not locked/synchronized to the LLRF (beam) and the reference and position cavities are not tuned exactly to the same frequency then phase errors are introduced (since the sampling time T is not known):

Clearly, at the correct time-shift, this correlation must exhibit a maximum – but its computation requires the data set to be shifted potentially by a fractional sample interval τ .

Such a shift can be performed easily in the frequency-domain (*F*{}: Fourier-transform):

> $= F\{ y(t) \}$ $Y(\omega)$ $y(t-t_{o}) = F^{(-1)} \{ Y(\omega) e^{(-j\omega t_{o})} \}$

The correlation R can also be expressed in the frequency domain:

 $R(\tau) = F^{(-1)} \{ X(\omega) \ S(\omega) \ e^{-j \, \omega \tau} \}$ $= F^{(-1)} \{ \|X(\omega)\| \|S(\omega)\| e^{j(\Psi(\omega) - \omega\tau)} \}$

and the extremum is found by taking the derivative to τ and setting to zero:

 $\frac{\partial R(\tau)}{\partial \tau} = F^{(-1)} \{ |X(\omega)| |S(\omega)| (-j\omega) e^{j(\Psi(\omega) - \omega\tau)} \} \stackrel{!}{=} 0$

The LHS is a non-linear function of τ (since τ appears in the exponent). However, close to the optimum – where R has a maximum – we can assume the phase difference $\Psi(\omega) - \omega \tau$ to be small.

Implementation Note

The estimation is computed on-line at the LCLS beam-rate of 120Hz using a CPU with SIMD co-processor under a real-time OS to calculate FFTs and perform other operations.

Conclusion

The proposed algorithm is able to estimate the timing errors introduced by an unlocked ADC. This reduces costs for a clock distribution and does not require careful tuning of the cavities.

 $\Phi_{Ref} = \omega_{Ref} T + \varphi_{Ref}$ $\Phi_{Pos} = \omega_{Pos} T + \varphi_{Pos}$ $\Phi_{Pos} - \Phi_{Ref} = \varphi_{Pos} - \varphi_{Ref} + (\omega_{Pos} - \omega_{Ref})T$

Sampling with an unsynchronized ADC introduces an "apparent" time-shift (Fig. 3):

Note: we do not assume that τ itself is small; only that $\omega \tau$ tracks Ψ reasonably well!

Under this assumption we can linearize

 $\frac{\partial R(\tau)}{\partial \tau} \approx F^{(-1)} \{ |X(\omega)| |S(\omega)| (-j\omega)(j (\Psi(\omega) - \omega\tau)) \}$

(only the odd part of the exponential is relevant) and solve for the unknown τ

 $\tau \approx \frac{F^{(-1)}\{ \|X(\omega)\| \|S(\omega)\| \|\omega\| \Psi(\omega)\}}{F^{(-1)}\{ \|X(\omega)\| \|S(\omega)\| \|\omega^2\}}$

(The full algorithm is a little bit more complex due to an unknown phase contribution from an unlocked LO.)

The method could also be useful for other applications.

Acknowledgment

This work was supported by U.S. Department of Energy Contract No. DE-AC02-76SF00515.