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Abstract: It is of vital importance to provide a continuous and comprehensive overview of the functionality of beam loss monitoring (BLM) systems, with particular emphasis on the connectivity and correct operation of the
detectors. At CERN, a new BLM system for the pre-accelerators of the LHC is currently at an advanced stage of development. This contribution reports on a new method which aims to automatically and continuously ensure the
proper connection and performance of the detectors used in the new BLM system.
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Motivation

� Beam loss monitoring (BLM) very important in machine pro-
tection and optimization at CERN

� Continuous functional supervision of BLM system essential

� This feature doesn’t exist in any accelerator to our knowledge

New BLM system in development for the LHC Injectors
→ Aim: development of a process ensuring an uninterrupted su-
pervision of the entire BLM signal chain

The suggested solution
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Fig. 1: Schematic view of the signal chain used for the modulation.

� LHC experience: modulation of HV → response in output current

� Injectors:

– Continuous but pulsed operation → same scheme not usable

– Usable frequency range far exceeds that at the LHC

– Swept frequency (chirp) excitation possible → unique signature

– Seamless enabling/disabling of modulation possible

→ ”Gated”modulation: operational measurement and modulation separate

Gated modulation

� Basic period: 1.2 s – at least 0.5 s without beam

� Modulation active when beam not present
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Fig. 2: Response to a 0− 50 Hz chirp excitation in the lab.

Detecting the modulation
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Fig. 3: Response to a 0− 20 Hz chirp excitation at the PSB.

Cross-correlation with reference
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Fig. 4: Cross-correlation waveform at the PSB with a linear chirp from 0 Hz to 20 Hz.

� Cross-correlation on FPGA: time domain, fixed arithmetic → resource-efficient

� Need to eliminate beam loss contributions like the clipped peak on Fig. 3 → windowing and average suppression applied to signal

� Maximal cross-correlation value ( on Fig. 4) registered in each basic period, amplitude and time of detection compared to acceptance limits

Cross-correlation at the PSB
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Fig. 5: Cross-correlation peak amplitude and detection time statistics and acceptance limits per channel at the PSB.

Series of acquisitions from all 40 channels currently available at the PSB

� 1024 contiguous samples of cross-correlation maxima → about 20 minutes

� Channels with longer cables: channels 1-8, 25-32

– Lower amplitude, higher standard deviation

� Channels with shorter cables: channels 9-24

– Shorter delay in time of detection, lower standard deviation

� Disconnected channels: channels 33-36

– Separate amplitude range → good detectability

– Time of detection unpredictable

� Acceptance limits

– Unique per detector

– Tuned further based on subsequent acquisitions

Failure cases covered

Tests in the lab and at LINAC4: all possible cable disconnection scenarios covered

� Disconnection of the HV or signal cable, at the electronics or at the detector

� LHC implementation: filter capacitor variation→ modulation phase variation

– Faulty soldering, capacitor degradation due to radiation

� Injectors: different frequency range, different behavior expected (see Fig. 6)

– Filter capacitor variation→ amplitude variation, no change in phase behavior

– Simulation results confirmed by measurements

– High amplitude variation (see Fig. 5) → wide acceptance window → reduced
sensitivity to filter capacitor deterioration
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C = 940 nF C = 470 nF, nominal C = 235 nF C = 47 nF C = 0

Fig. 6: Simulated Bode plot of the input current digitized by the front-end card for different filter capacitor values.

Conclusions
The method presented above is a promising candidate for continuous functional supervision of the new BLM system
Future work: Refinement of the currently used acceptance windows is desirable in order to improve the sensitivity of the method
Question for the future: Is the detection of other failure cases possible with this method?


