Author: Zhu, J.
Paper Title Page
MOPG36 Timing Window and Optimization for Position Resolution and Energy Calibration of Scintillation Detector 123
 
  • J. Zhu, M.H. Fang, J. Wang, Z.Y. Wei
    NUAA, Nanjing, People's Republic of China
 
  The real event selection, timing resolution, position resolution and energy response of the EJ-200 plastic scintillation detector have been analyzed using timing window coincidence measurement. The detector was simulated based on Monte Carlo, including its geometry, energy deposition, photon collection and signal generation. The detection efficiency and the real events selection have been obtained while the background noise has been reduced by using two-end readout timing window coincidence. We developed an off-line analysis code, which is suitable for massive data from the digitizer. We set different coincidence timing windows, and did the off-line data processing respectively. We find the detection efficiency increases as the width of the timing window increases, and when the width of timing window is more than 10ns, the detection efficiency will slowly grow until it reaches saturation. Time, position and energy response have been measured by exposing to radioactive sources. The best timing window parameter as 16ns is obtained for on-line coincidence measurement, and the position resolution is up to 12cm. Energy response of the detector was linear within the experimental energy range*.
* L. Karsch, A. Bohm et al, "Design and Test of A Large-area Scintillation Detector for Fast Neutrons", Nuclear Instruments and Methods in Physics Research A, vol.460, pp.362-367, 2001.
 
poster icon Poster MOPG36 [5.665 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG36  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPG22 Timing Window and Optimization for Position Resolution and Energy Calibration of Scintillation Detector 372
 
  • J. Zhu, M.H. Fang, J. Wang, Z.Y. Wei
    NUAA, Nanjing, People's Republic of China
 
  The real event selection, timing resolution, position resolution and energy response of the EJ-200 plastic scintillation detector have been analyzed using timing window coincidence measurement. The detector was simulated based on Monte Carlo, including its geometry, energy deposition, photon collection and signal generation. The detection efficiency and the real events selection have been obtained while the background noise has been reduced by using two-end readout timing window coincidence. We developed an off-line analysis code, which is suitable for massive data from the digitizer. We set different coincidence timing windows, and did the off-line data processing respectively. We find the detection efficiency increases as the width of the timing window increases, and when the width of timing window is more than 10ns, the detection efficiency will slowly grow until it reaches saturation. Time, position and energy response have been measured by exposing to radioactive sources. The best timing window parameter as 16ns is obtained for on-line coincidence measurement, and the position resolution is up to 12cm. Energy response of the detector was linear within the experimental energy range*.
* L. Karsch, A. Bohm et al,"Design and Test of A Large-area Scintillation Detector for Fast Neutrons", Nuclear Instruments and Methods in Physics Research A, vol.460, pp.362-367, 2001.
 
poster icon Poster TUPG22 [5.665 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG22  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)