Author: Stella, A.
Paper Title Page
TUPG74 Spot Size Measurements in the ELI-NP Compton Gamma Source 532
 
  • F. Cioeta, E. Chiadroni, G. Di Pirro, G. Franzini, V. Shpakov, A. Stella, A. Variola
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    INFN-Roma II, Roma, Italy
  • M. Marongiu
    INFN-Roma, Roma, Italy
  • A. Mostacci, L. Palumbo
    University of Rome La Sapienza, Rome, Italy
 
  A high brightness electron Linac is being built in the Compton Gamma Source at the ELI Nuclear Physics facility in Romania. To achieve the design luminosity, a train of 32, 16 ns spaced, bunches with a nominal charge of 250 pC will collide with the laser beam in the interaction point. Electron beam spot size is measured with an OTR (optical transition radiation) profile monitors. In order to measure the beam properties, the optical radiation detecting system must have the necessary accuracy and resolution. This paper deals with the studies of different optic configurations to achieve the magnification, resolution and accuracy desired considering design and technological constraints; we will compare several configurations of the optical detection line to justify the one chosen for the implementation in the Linac.  
poster icon Poster TUPG74 [44.049 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG74  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPG25 Beam Diagnostics for Charge and Position Measurements in ELI-NP GBS 682
 
  • G. Franzini, F. Cioeta, O. Coiro, D. Pellegrini, M. Serio, A. Stella, A. Variola
    INFN/LNF, Frascati (Roma), Italy
  • A. Mostacci, S. Tocci
    University of Rome La Sapienza, Rome, Italy
 
  The advanced source of Gamma-ray photons to be built in Bucharest (Romania), as part of the ELI-NP European Research Infrastructure, will generate photons by Compton back-scattering in the collision between a multi-bunch electron beam and a high intensity recirculated laser pulse. An S-Band photoinjector and the following C-band Linac at a maximum energy of 720MeV, under construction by an European consortium (EurogammaS) led by INFN, will operate at 100Hz repetition rate with trains of 32 electron bunches, separated by 16ns and a 250pC nominal charge. The different BPMs and current transformers used to measure transverse beam position and charge along the LINAC are described. Design criteria, production status and bench test results of the charge and position pickups are reported in the paper, together with the related data acquisition systems.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG25  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)