Author: Sieber, T.
Paper Title Page
TUPG05 Simulation of Bunch Length and Velocity Dependence of Button BPMs for Linacs Using CST Particle Studio® 319
 
  • M.H. Almalki
    KACST, Riyadh, Kingdom of Saudi Arabia
  • P. Forck, T. Sieber, R. Singh
    GSI, Darmstadt, Germany
 
  At non-relativistic velocities at a proton LINAC, the electromagnetic field generated by the beam has a significant longitudinal component, and thus the time evolution of the signal coupled to the BPM electrodes depends on bunch length and beam velocity. Extensive simulations with the electromagnetic simulation tool CST Studio® were executed to investigate the dependence of the induced BPM signal on different bunch lengths and velocities. Related to the application, the simulations are executed for the button BPM arrangement as foreseen for the FAIR Proton LINAC. These investigations provide the required inputs for the BPM system and its related technical layout such as analogue bandwidth and signal processing electronics. For the BPM electronics, it is important to estimate the contribution of the harmonic used for the data processing. Additionally, the analogue bandwidth of the BPM system is determined from studying the output signal of the button BPM as a function of bunch length at different beam velocities. This contribution presents the results of the simulations and comments on general findings relevant for a BPM layout and the operation of a hadron LINAC.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPG43 The Next Generation of Cryogenic Current Comparators for Beam Monitoring 441
 
  • V. Tympel, J. Golm, R. Neubert, P. Seidel
    FSU Jena, Jena, Germany
  • J. Golm, T. Stöhlker
    HIJ, Jena, Germany
  • F. Kurian, M. Schwickert, T. Sieber, T. Stöhlker
    GSI, Darmstadt, Germany
  • M. Schmelz, R. Stolz
    IPHT, Jena, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • V. Zakosarenko
    Supracon AG, Jena, Germany
 
  Funding: Federal Ministry of Education and Research- BMBF, contract: 05P15SJRBA
A new Cryogenic Current Comparator with eXtended Dimensions (CCC-XD) is currently under development for a non-destructive, highly sensitive monitoring of nA-intensities of beams for larger beamline diameters planned for the new FAIR accelerator facility at GSI. The CCC consists of a superconducting coil which is read out by a Superconducting Quantum Interference Device (SQUID), a flux concentrator and a superconducting shield. The new flux concentrator comprises of a specially designed, highly permeable core made of nanocrystalline material in order to assure a low-noise operation and a high system bandwidth of up to 200 kHz. The superconducting shielding of niobium has extended geometric dimensions and will suppress disturbing magnetic fields of the beamline environment effectively. New SQUID sensors with sub-μm-Josephson junctions enable extreme low-noise signals and high disturbance-suppression. The CCC-XD system and the new dedicated cryostat will be ready for testing in the CRYRING at GSI in 2017. Results from electrical measurements with the components of the new CCC-XD Setup will be presented in this work.
 
poster icon Poster TUPG43 [4.019 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG43  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPG50 Status of Beam Current Transformer Developments for FAIR 461
 
  • M. Schwickert, F. Kurian, H. Reeg, T. Sieber
    GSI, Darmstadt, Germany
  • K. Hofmann
    TU Darmstadt, Darmstadt, Germany
  • F. Kurian
    HIJ, Jena, Germany
  • R. Neubert, P. Seidel
    FSU Jena, Jena, Germany
  • E. Soliman
    German University in Cairo, New Cairo City, Egypt
 
  In view of the upcoming FAIR project (Facility for Antiproton and Ion Research) several long-term development projects had been initiated with regard to diagnostic devices for beam current measurement. The main accelerator of FAIR will be the fast ramped superconducting synchrotron SIS100. Design parameters of SIS100 are acceleration of 2.5·1013 protons/cycle to 29 GeV for the production of antiprotons, as well as acceleration and slow extraction of p to U ions at 109 ions/s in the energy range of 0.4-2.7 GeV/u and extraction times of up to 10 s. For high-intensity operation non-intercepting devices are mandatory, thus the developments presented in this contribution focus on purpose-built beam current transformers. First prototype measurements of a dc current transformer based on a Tunneling Magneto Resistance sensor are presented, as well as recent achievements with a SQUID-based Cryogenic Current Comparator.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG50  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPG70 Test of the Imaging Properties of Inorganic Scintillation Screens Using Fast and Slow Extracted Ion Beams 516
 
  • A. Lieberwirth, P. Forck, O.K. Kester, S. Lederer, T. Sieber, B. Walasek-Höhne
    GSI, Darmstadt, Germany
  • W. Ensinger, S. Lederer, A. Lieberwirth
    TU Darmstadt, Darmstadt, Germany
  • P. Forck, O.K. Kester
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by BMBF, contract number 05P12RDRBJ
Inorganic scintillation screens are a common transverse profile diagnostics tool for beams extracted from the heavy ion synchrotron SIS18 at GSI. Detailed investigations concerning light output, profile reproduction and spectral emission were performed for phosphor screens P43 and P46, single crystal YAG:Ce, alumina ceramics and Chromium-doped alumina (Chromox). The screens were irradiated with several ion species from proton to Uranium. The particle energy was 300 MeV/u at intensities in the range from some 106 to 1010 particles per pulse, using either fast extraction (1μsecond duration) or slow extraction (some 100 ms duration). The light output coincides for both extraction types, i.e. no significant saturation was observed. For all materials the optical emission spectrum is independent on the ion species or beam intensities. Radiation hardness tests were performed with up to 1012 accumulated ions: The phosphor P46 as well as YAG:Ce shows no significant decrease of light output, while for P43 and Chromox a decrease by 5 to 15 % was measured. These results will trigger the choice of the standard screens installed at the FAIR facility.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG70  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPG40 Optimization Studies for an Advanced Cryogenic Current Comparator (CCC) System for FAIR 715
 
  • T. Sieber, P. Kowina, M. Schwickert, T. Stöhlker
    GSI, Darmstadt, Germany
  • J. Golm, T. Stöhlker
    HIJ, Jena, Germany
  • F. Kurian, T. Stöhlker
    IOQ, Jena, Germany
  • R. Neubert, V. Tympel
    FSU Jena, Jena, Germany
 
  Funding: The work is supported by BMBF (Contract number: 05P15SJRBA)
After successful tests with the GSI-CCC prototype, measuring beam intensities down to 2nA at a bandwidth of 10 kHz, a new advanced Cryogenic Current Comparator system with extended geometry (CCC-XD) is under development. This system will be installed in the upcoming Cryring facility for further optimization, beam diagnostics and as an additional instrument for physics experiments. After the test phase in Cryring it is foreseen to build four additional CCC units for FAIR, where they will be installed in the HEBT lines and in the Collector Ring (CR). A universal cryostat has been designed to cope with the various boundary conditions at FAIR and at the same time to allow for uncomplicated access to the inner components. To realize this compact cryostat, the size of the superconducting magnetic shielding has to be minimized as well, without affecting its field attenuation properties. Hence detailed FEM simulations were performed to optimize the attenuation factor by variation of geometrical parameters of the shield. The beam tests results with the GSI-CCC prototype, and the developments for FAIR, as well as the results of simulation for magnetic shield optimization will be presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG40  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)