Paper | Title | Page |
---|---|---|
MOPG06 | First Beam Tests of the APS MBA Upgrade Orbit Feedback Controller | 39 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357 The new orbit feedback system required for the APS multi-bend acromat (MBA) ring must meet challenging beam stability requirements. The AC stability requirement is to correct rms beam motion to 10 \% the rms beam size at the insertion device source points from 0.01 to 1000 Hz. The vertical plane represents the biggest challenge for AC stability which is required to be 400 nm rms for a 4 micron vertical beam size. In addition long term drift over a period of 7 days is required to be 1 micron or less at insertion device BPMs and 2 microns for arc bpms. We present test results of the MBA prototype orbit feedback controller (FBC) in the APS storage ring. In this test, four insertion device BPMs were configured to send data to the FBC for processing into four fast corrector setpoints. The configuration of four bpms and four fast correctors creates a 4-bump and the configuration of fast correctors is similar to what will be implemented in the MBA ring. We report on performance benefits of increasing the sampling rate by a factor of 15 to 22.6 kHz over the existing APS orbit feedback system, limitations due to existing storage ring hardware and MBA orbit feedback design. |
||
![]() |
Poster MOPG06 [6.490 MB] | |
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG06 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPG10 | BPM Stabiltiy Studies for the APS MBA Upgrade | 55 |
|
||
Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The Advanced Photon Source (APS) is currently in the preliminary design phase for the multi -bend achromat (MBA) lattice upgrade. Beam stability is critical for the MBA and will require long term drift defined as beam motion over a seven-day timescale to be no more than 1 micron at the insertion device locations and beam angle change no more than 0.5 micro-radian. Mechanical stability of beam position monitor (BPM) pickup electrodes mounted on insertion device vacuum chambers place a fundamental limitation on long-term beam stability for insertion device beamlines. We present the design and implementation of using prototype mechanical motion system (MMS) instrumentation for quantifying this type of motion specifically in the APS accelerator tunnel and experiment hall floor under normal operating conditions. The MMS presently provides critical position information on the vacuum chamber and BPM support systems. Initial results of the R&D prototype systems have demonstrated that the chamber movements far exceed the long-term drift tolerance specified for the APS Upgrade MBA storage ring. |
||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG10 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |