Author: Li, C.L.
Paper Title Page
MOPG70 Transverse Beam Profiling and Vertical Emittance Control with a Double-Slit Stellar Interferometer 236
 
  • W.J. Corbett, X. Huang, J. Wu
    SLAC, Menlo Park, California, USA
  • C.L. Li, W.J. Zhang
    East China University of Science and Technology, Shanghai, People's Republic of China
  • T.M. Mitsuhashi
    KEK, Ibaraki, Japan
  • Y.H. Xu
    DongHua University, Songjiang, People's Republic of China
  • W.J. Zhang
    University of Saskatchewan, Saskatoon, Canada
 
  Double-slit interferometers are useful tools to measure the transverse the cross-section of relativistic charged particle beams emitting incoherent synchrotron radiation. By rotating the double-slit about the beam propagation axis, the transverse beam profile can be reconstructed including beam tilt at the source. The interferometer can also be used as a sensitive monitor for vertical emittance control. In this paper we outline a simple derivation of the Van Cittert-Zernike theorem, present results for a rotating double-slit measurement and demonstrate application of the interferometer to vertical emittance control using the Robust Conjugate Direction Search (RCDS) optimization algorithm.  
poster icon Poster MOPG70 [1.362 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG70  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPG71 Polarization Measurement and Modeling of Visible Synchrotron Radiation at Spear3 240
 
  • C.L. Li, W.J. Zhang
    East China University of Science and Technology, Shanghai, People's Republic of China
  • W.J. Corbett
    SLAC, Menlo Park, California, USA
  • Y.H. Xu
    DongHua University, Songjiang, People's Republic of China
  • W.J. Zhang
    University of Saskatchewan, Saskatoon, Canada
 
  Synchrotron radiation from dipole magnets is linearly polarized in the plane of acceleration and evolves toward circular polarization with increasing vertical observation angle. The intensity of the x-y field components can be modeled with Schwinger's theory for the angular-spectral power distribution. Combined with Fresnel's laws for reflection at a mirror surface, it is possible to model field polarization of visible SR light in the laboratory. The polarization can also be measured with a polarizer and quarter wave plate to yield Stokes' parameters S0-S3. In this paper we present measurements and modeling of the visible SPEAR3 SR beam in terms of Stokes' parameters and plot on the results on the Poincaré sphere.  
poster icon Poster MOPG71 [1.527 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG71  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)