Author: Kangrang, N.
Paper Title Page
MOPG56 Development of Accelerator System and Beam Diagnostic Instruments for Natural Rubber and Polymer Research 190
 
  • E. Kongmon, N. Kangrang, S. Rimjaem, J. Saisut, C. Thongbai
    Chiang Mai University, Chiang Mai, Thailand
  • M.W. Rhodes
    ThEP Center, Commission on Higher Education, Bangkok, Thailand
  • P. Wichaisirimongkol
    Chiang Mai University, Science and Technology Research Institute, Chiang Mai, Thailand
 
  This research aims to design and develop an elec-tron linear accelerator system and beam diagnostic instruments for natural rubber and polymer research at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The accelerator con-sists of a DC thermionic electron gun and an S-band standing-wave linac. The system can produce electron beams with the energy range of 0.5 to 4 MeV for the pulse repetition rate of 30 to 200 Hz and the pulse duration of 4 μs. Commissioning of the accelerator system and development of beam diagnostic instru-ments to measure electron beam energy, electron pulse current and electron dose are underway. This contribu-tion presents and discusses on the RF commissioning progress as well as status of design and construction of the beam diagnostic system.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG56  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPG38 Characterization and Simulations of Electron Beams Produced From Linac-Based Intense THz Radiation Source 131
 
  • N. Chaisueb, S. Rimjaem, J. Saisut
    Chiang Mai University, Chiang Mai, Thailand
  • N. Kangrang
    Chiang Mai University, PBP Research Facility, Chiang Mai, Thailand
 
  Electron beams with a maximum energy of 2.5 MeV and a macropulse current of 1 A are produced from a thermionic RF-gun of the linear accelerator system at Chiang Mai University, Thailand. An RF rectangular waveguide and a side coupling cavity of the RF gun introduce asymmetric field distribution inside the gun cavities. To investigate the effect of the asymmetric field distribution on electron beam production and acceleration, measurements and simulations of the electron beam properties were performed. In this study we use well calibrated current transformers, alpha magnet energy slits, and a Michelson interferometer to measure the electron pulse current, the beam energy, and the bunch length, respectively. This paper presents the measurement data of the electron beam properties at various location along the beam transport line and compares the results with the beam dynamic simulations by using the particle tracking program ELEGANT. Moreover, the RF field feature and the cathode power were optimized in order to achieve the high qualities of the electron beam produced from the RF gun. This result implies and correlates to the electron back-bombardment effect inside the gun cavities.
* This work has been supported by the Thailand Center of Excellence in Physics, Faculty of science, Chiang Mai University, and the Science Achievement Scholarship of Thailand (SAST).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG38  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)