Author: Jang, S.W.
Paper Title Page
TUPG16 Performance of Nanometre-Level Resolution Cavity Beam Position Monitors and Their Application in an Intra-Train Beam Position Feedback System 352
 
  • N. Blaskovic Kraljevic, T. Bromwich, P. Burrows, G.B. Christian, C. Perry, R.L. Ramjiawan
    JAI, Oxford, United Kingdom
  • P. Bambade
    LAL, Orsay, France
  • D.R. Bett
    CERN, Geneva, Switzerland
  • S.W. Jang
    Korea University Sejong Campus, Sejong, Republic of Korea
  • T. Tauchi, N. Terunuma
    KEK, Ibaraki, Japan
 
  A system of three low-Q cavity beam position monitors (BPMs), installed in the interaction point (IP) region of the Accelerator Test Facility (ATF2) at KEK, has been designed and optimised for nanometre-level beam position resolution. The BPMs have been used to provide an input to a low-latency, intra-train beam position feedback system consisting of a digital feedback board and a custom stripline kicker with power amplifier. The feedback system has been deployed in single-pass, multi-bunch mode with the aim of demonstrating intra-train beam stabilisation on electron bunches of charge ~1 nC separated in time by c. 220 ns. The BPMs have a demonstrated resolution of below 50 nm on using the raw measured vertical positions at the three BPMs, and has been used to stabilise the beam to below the 75 nm level. Further studies have shown that the BPM resolution can be improved to around 10 nm on making use of quadrature-phase signals and the results of the latest beam tests will be presented.  
poster icon Poster TUPG16 [1.496 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG16  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)