Author: Ischebeck, R.
Paper Title Page
MOPG52 Simulation of THz Streak Camera Performance for Femtosecond FEL Pulse Length Measurement 176
 
  • I. Gorgisyan, R. Ischebeck, P.N. Juranič, E. Prat, S. Reiche
    PSI, Villigen PSI, Switzerland
  • I. Gorgisyan
    EPFL, Lausanne, Switzerland
 
  Measurement of the temporal duration of FEL pulses is important both for the operators to monitor the performance of the machine and the users performing pump-probe measurements with FEL beam. The light-field streak camera is a promising methods for the photon pulse length measurement that uses the electric field of an IR/THz laser to streak the photoelectrons*. This contribution presents a simulation of the performance of a streak camera using a single-cycle THz pulse**. The simulation recreates the photoionization process and generates electron spectra in presence of the THz field and without it. Using these spectra the photon pulse lengths are calculated and compared to the initial values. Most of the parameters used in the simulation are chosen based on experiments performed earlier.*** This contribution presents the simulation method and the obtained results. It validates the pulse length calculation analysis method and estimates the expected measurement accuracy and precision for the THz streak camera measurement technique. The simulations were done for different FEL pulse lengths ranging from about 1 fs to 40 fs both in soft and hard X-ray range.
*J. Itatani et al, PRL 88,2002
*U. Fruhling et al, N. Phot. 3,2009
**I. Gorgisyan et al, JSR 3,2016
***P. N. Juranic et al, Opt. Exp. 22,2014
***P. N. Juranic et al, J. Inst. 9,2014
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG52  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPG66 Design and Experimental Tests of the SwissFEL Wire-Scanners 225
 
  • G.L. Orlandi, R. Ischebeck, C. Ozkan Loch, V. Schlott
    PSI, Villigen PSI, Switzerland
  • M. Ferianis, G. Penco
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The SwissFEL wire-scanner (WSC) composes of an in-vacuum beam-probe - motorized by a stepper motor - and an out-vacuum pick-up of the wire-signal. In SwissFEL, WSCs will absolve two main tasks: high precision measurement of the beam profile for determining the beam emittance as a complement to view-screens; routine monitoring of the beam profile under FEL operations. In order to fulfill the aforementioned tasks, the design of the in-vacuum component of the SwissFEL WSCs followed the guidelines to ensure a mechanical stability of the scanning wire at the micrometer level as well as a significative containment of the radiation-dose release along the machine thanks to the choice of metallic wires with low density and Atomic number. Beam-loss monitors have been suitably designed to ensure a sufficient sensitivity and dynamics to detect signals from scanned beams in the charge range 10-200 pC. The design, the prototyping phases, the bench and electron-beam tests - performed at SITF (Paul Scherrer Institut) and FERMI (Elettra, Trieste) - of the entire SwissFEL WSC set-up will be presented.
Contribution accepted for publication in Physical Review Accelerators and Beams
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG66  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPG56 Design of a Time-resolved Electron Diagnostics Using THz Fields Excited in a Split Ring Resonator at FLUTE 475
 
  • M. Yan, E. Bründermann, S. Funkner, A.-S. Müller, M.J. Nasse, G. Niehues, R. Ruprecht, M. Schedler, T. Schmelzer, M. Schuh, M. Schwarz, B. Smit
    KIT, Karlsruhe, Germany
  • M.M. Dehler, N. Hiller, R. Ischebeck, V. Schlott
    PSI, Villigen PSI, Switzerland
  • T. Feurer, M. Hayati
    Universität Bern, Institute of Applied Physics, Bern, Switzerland
 
  Time-resolved electron diagnostics with ultra-high temporal resolution is increasingly required by the state-of-the-art accelerators. Strong terahertz (THz) fields, excited in a split ring resonator (SRR), have been recently proposed to streak electron bunches for their temporal characterisation. Thanks to the high amplitude and frequency of the THz field, temporal resolution down to the sub-femtosecond range can be expected. We are planning a proof-of-principle experiment of the SRR time-resolved diagnostics at the accelerator test-facility FLUTE (Ferninfrarot Linac und Test Experiment) at the Karlsruhe Institute of Technology. The design of the experimental chamber has been finished and integrated into the design layout of the FLUTE accelerator. Beam dynamics simulations have been conducted to investigate and optimise the performance of the SRR diagnostics. In this paper, we present the design layout of the experimental setup and discuss the simulation results for the optimised parameters of the accelerator and the SRR structure.  
poster icon Poster TUPG56 [6.961 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG56  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAL01 PALM Concepts and Considerations 848
 
  • P.N. Juranič, R. Abela, I. Gorgisyan, C.P. Hauri, R. Ischebeck, B. Monoszlai, L. Patthey, C. Pradervand, M. Radović, L. Rivkin, V. Schlott, A.G. Stepanov
    PSI, Villigen PSI, Switzerland
  • C.P. Hauri, L. Rivkin
    EPFL, Lausanne, Switzerland
  • R. Ivanov, P. Peier
    DESY, Hamburg, Germany
  • J. Liu
    XFEL. EU, Hamburg, Germany
  • K. Ogawa, T. Togashi, M. Yabashi
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • S. Owada
    JASRI/RIKEN, Hyogo, Japan
 
  The Photon Arrival and Length Monitor (PALM), a THz streak camera device developed by PSI for non-destructive hard x-ray measurements of photon pulse length and arrival time versus a pump laser*, was brought to the SACLA XFEL** in Japan in a cross-calibration temporal diagnostics campaign after an initial experiment where only the PALM was being used***. The device was used with 9 keV pink beam and a 9.0 and 8.8 keV two-color mode, successfully measuring the arrival time and pulse lengths for several different FEL operating conditions. The device has shown itself to be very robust and transparent to the FEL beam, with temporal characterization accuracies of 15 fs or better. SwissFEL will employ two such devices at the end stations for use by both operators and experimenters to improve the operation of the FEL and to better interpret experimental data. This report presents the PALM and its uses and capabilities, and discusses the results from the SACLA cross-calibration experiments.
* P. N. Juranic et. al, Journal of Instrumentation (2014) 9.
** T. Ishikawa et. al., Nature Photonics (2012) 6(8).
*** P. N. Juranic et. al., Optics Express (2014) 22.
 
slides icon Slides THAL01 [85.575 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-THAL01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)