Author: Baboi, N.
Paper Title Page
MOBL02 First Experience with the Standard Diagnostics at the European XFEL Injector 14
 
  • D. Lipka, A. Affeldt, A. Awwad, N. Baboi, B. Barret, B. Beutner, F. Brinker, W. Decking, A. Delfs, M. Drewitsch, O. Frank, C. Gerth, V. Gharibyan, O. Hensler, M. Hoeptner, M. Holz, K.K. Knaack, F. Krivan, I. Krouptchenkov, J. Kruse, G. Kube, B. Lemcke, T. Lensch, J. Liebing, T. Limberg, B. Lorbeer, J. Lund-Nielsen, S.M. Meykopff, B. Michalek, J. Neugebauer, Re. Neumann, Ru. Neumann, D. Nölle, M. Pelzer, G. Petrosyan, Z. Pisarov, P. Pototzki, G. Priebe, K.R. Rehlich, D. Renner, V. Rybnikov, G. Schlesselmann, F. Schmidt-Föhre, M. Scholz, L. Shi, P.A. Smirnov, H. Sokolinski, C. Stechmann, M. Steckel, R. Susen, H. Tiessen, S. Vilcins, T. Wamsat, N. Wentowski, M. Werner, Ch. Wiebers, J. Wilgen, K. Wittenburg, R. Zahn, A. Ziegler
    DESY, Hamburg, Germany
  • R. Baldinger, R. Ditter, B. Keil, W. Koprek, R. Kramert, G. Marinkovic, M. Roggli, M. Stadler, D.M. Treyer
    PSI, Villigen PSI, Switzerland
  • A. Ignatenko
    DESY Zeuthen, Zeuthen, Germany
  • A. Kaukher
    XFEL. EU, Hamburg, Germany
  • O. Napoly, C. Simon
    CEA/DSM/IRFU, France
 
  The injector of the European XFEL is in operation since December 2015. It includes, beside the gun and the accelerating section, containing 1.3 and a 3.9 GHz accelerating module, a variety of standard diagnostics systems specially designed for this facility. With very few exceptions, all types of diagnostics systems are installed in the injector. Therefore the operation of the injector is served to validate and prove the diagnostics characteristics for the complete European XFEL. Most of the standard diagnostics has been available for the start of beam operation and showed the evidence of first beam along the beam line. In the following months the diagnostics has been optimized and used for improvements of beam quality. First operational experiences and results from the standard beam diagnostics in the injector of the European XFEL will be reported in this contribution.  
slides icon Slides MOBL02 [5.844 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOBL02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPG17 Design and Beam Test Results of the Reentrant Cavity BPM for the European XFEL 356
 
  • C. Simon, M. Luong, O. Napoly
    CEA/DSM/IRFU, France
  • N. Baboi, D. Lipka, D. Nölle, G. Petrosyan
    DESY, Hamburg, Germany
  • R. Baldinger, B. Keil, G. Marinkovic, M. Roggli
    PSI, Villigen PSI, Switzerland
  • M. Baudrier
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • L. Maurice
    CEA/IRFU, Gif-sur-Yvette, France
 
  The European X-ray Free Electron Laser (E-XFEL) will use reentrant beam position monitors (BPMs) in about one quarter of the superconducting cryomodules. This BPM is composed of a radiofrequency (RF) reentrant cavity with 4 antennas and an RF signal processing electronics. Hybrid couplers, near the cryomodules, generate the analog sum and difference of the raw pickup signals coming from two pairs of opposite RF feedthroughs. The resulting sum (proportional to bunch charge) and difference signals (proportional to the product of position and charge) are then filtered, down-converted by an RF front-end (RFFE), digitized, and digitally processed on an FPGA board. The task of CEA/Saclay was to cover the design, fabrication and beam tests and deliver these reentrant cavity BPMs for the E-XFEL linac in collaboration with DESY and PSI. This paper gives an overview of the reentrant BPM sys-tem with focus on the last version of the RF front end electronics, signal processing, and overall system performance. Measurement results achieved with prototypes installed at the DESY FLASH2 linac and in the E-XFEL injector are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG17  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPG03 HOM Characterization for Beam Diagnostics at the European XFEL Injector 616
 
  • N. Baboi, T. Hellert, L. Shi, T. Wamsat
    DESY, Hamburg, Germany
  • R.M. Jones, N.Y. Joshi, L. Shi
    UMAN, Manchester, United Kingdom
  • N.Y. Joshi
    University of Manchester, Manchester, United Kingdom
 
  Funding: The work is part of EuCARD-2, partly funded by the European Commission, GA 31245.
Higher Order Modes (HOM) excited by bunched elec-tron beams in accelerating cavities carry information about the beam position and phase. This principle is used at the FLASH facility, at DESY, for beam position monitoring in 1.3 and 3.9 GHz cavities. Dipole modes, which depend on the beam offset, are used. Similar monitors are now under design for the European XFEL. In addition to beam position, the beam phase with respect to the accelerating RF will be monitored using monopole modes from the first higher order monopole band. The HOM signals are available from two couplers installed on each cavity. Their monitoring will allow the on-line tracking of the phase stability over time, and we anticipate that it will improve the stability of the facility. As part of the monitor designing, the HOM spectra in the cavities of the 1.3 and 3.9 GHz cryo-modules installed in the European XFEL injector have been measured. This paper will present their dependence on the beam position. The variation in the modal distribution from cavity to cavity will be discussed. Based on the results, initial phase measurements based on a fast oscilloscope have been made.
 
poster icon Poster WEPG03 [3.281 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)