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Outline

e Danilov Distribution

e Space Charge Mitigation

e Painting Requirements

e The Spallation Neutron Source
e Experiments to date
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{2,2}-Danilov* Distribution is Selt-Consistent
{2,2} Danilov Distribution

1. | Uniform real space distribution (linear
space charge)

2. | Ellipfical envelope

3. Maintains (1),(2) under any linear o
transport (including space charge) B
A uniformly filled circular mode is a Danilov
distribution. By (3) we can match this fo any £ |.:
linear optics and maintain a Danilov "L
distribution. —
* We call the {2,2} the Danilov distribution Z 0:
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 6, 094202 (2003) - -2—j

Self-consistent time dependent two dimensional and three dimensional space charge
distributions with linear force

V. Danilov, S. Cousineau, S. Henderson, and J. Holmes
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Danilov Distribution Key Features

 \Uniform space charge implies reduced
tune shift, and minimal spread

« When matched to a coupled ring
elliptical envelope means distribution is
unform over a mode — (could use equal %
tunes, but then modes are degenerate) =~

e |eigenmode implies vanishing 4D

emittance

 Invariant proportional to real space radius
meaning we can add more beam at the _
edges, painting beam while maintaining
self-consistency — this is a scalable :

y [mm]

y' [mrad]
o

procedure

LLLLLLLLLLLLLLLLLL
% OAK RIDGE | i |Reen

National Laboratory | REACTOR | SOURCE

4




Space Charge Mitigation

e Footprint is much smaller than standard SNS tfune footprint

 Low 4D emittance implies brighter with same physical size (many benefits
of circular modes apply) (Burov et al. PR.E 2002, Burov PRAB 2013 )
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This tune shift is partly due to solenoid breaking
degeneracy, need to isolate space charge
tune shift,

O Bare lattice tunes Self-consistent

«——Tune Shift
«—Sparse tail

THAWO03 Proceedings of HB2006, Tsukuba, Japan

RF BARRIER CAVITY OPTION FOR THE SNS RING BEAM POWER
UPGRADE

J.A. Holmes, S.M. Cousineau, V.V. Danilov, and A.P. Shishlo, SNS, ORNL, Oak Ridge, TN
37830, USA



SNS Project Goals

e Proof-of-principle painting of a uniformly filled, elliptical bunch
INn the SNS ring (approx. {2,2}-Danilov distribution, the Danilov
distribution)

e Study evolution of the Danilov dist. during painting and storage

Arrows indicate
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Painting Requirements*

| Low 4D emittance

1. |ISmall injected emittance relative to larger of final emittances

- |nitial emittance (size of the paintbrush) defines the achievable
‘emittance ratio’

2. Non-planar modes
- either through equal funes or lattice coupling

- Correlated closed orbit paths in x and y planes in fime Uniformity

3.| Amplitude of injection should increase as Sqrt(t) along well-
defined path in 4D phase space

Detailed feasibility study:

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 124403 (2018)

*Painting into one plane in the ‘flat’ portion of a round-

to-flat tfransformer (Derbenev, 1993), then transforming Injection of a self-consistent beam with linear space charge force into a ring
TO round WOUld ellmanTe 2'3 WOUld |1- Work as We”' J. A. Holmes, T. Gorlov, N.J. Evans, M. Plum, and S. Cousineau
bettere Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, USA

™ (Received 15 May 2018; published 17 December 2018)

SPALLATION
NEUTRON
SOURCE

HIGH FLUX
ISOTOPE
REACTOR

%OAK RIDGE

National Laboratory




The SpCI”CIﬂOﬂ NeUTrOn SOurce Operational Parameters give:
¢ 1 GeV H-linac |Low 4D emittance | Space charge tune shiff: 0.15
)

Uniform beam fune shift: 0.1
Norm RMS emit = 0.46 mm - mrad (design

o ] GeV, C=248m Ring (~1us) A e
— 2 Solenoids, 1.2m each, 0.6 T-m total injecﬂonb' ;
- 1.5E14 ppp at 1.4 MW
—|Norm RMS Emittance = 44 mm - mrad (design)
— Trans. Acceptance = 480 mm - mrad

: —— 1 = W RTBT
— |Flexible painfing system
Uniformity HEBT / / AW\ Wirescanners
__lon Source . ; W A
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. Rlng—Torge’r Beam Transport (RTBT) Target&‘;

- 5 wirescanners, BPMs, BLMs, Harp, Target Instrument Hall | <" 2
Imaging System for inspecting extracted beam % $*
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Stripper foil
SNS Painting System |
. . . o T . e & i m .

« 4time varying magnets in each | @ =EE PR
plane to create ‘ T
Closed bUmpS WiTh OffseT G-I- fOil Quadrupoles Quadrupoles

° Time Vgrying pOSiTion Gnd Injection kickers Chicane dipoles Injection kickers

angle of ring closed orbit at
injection point

S e
7
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Y

HAccumulator
i Ring

| MaxKick'

1 GeV 800 MeV L
H/V kickers 1&4 15.4 mrad 17.8 mrad
H/V kickers 2&3 8.5 mrad 9.9 mrad

*Numbers after kicker upgrade - original simulations done at 600
MeV with old kicker limits, identical fo current 800 MeV operation

Tt

Figure 8: Long Injection dynamic bum magnets with
Beam Pipe and Bellow. .
: Raparia, 2005
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Painting Trajectory

Fixed chicane bump not shown

1 — x(initial)
60_ — vy (initial)
1 --- x (final)
404 ---y (final)
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Distance from injection point [m]

e Pure x bump
— all kickers decrease with time
— Injecting on closed orbit is only kicker
limitation
e« Purey’ bump

— some kickers kick more some less than
position bump

« We can ease kicker limitations by:

- biasing the closed orbit with correctors
— has to be determined on-line

- Reducing beam energy — 800 MeV is
lower limit because of fiming system*
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Horizontal Kickers
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SNS Solenoids

« Solenoids were designed and
built by Stangenes Industries

e Installed late Nov. 2022

* Solenoids (0.6 T-m, peak B, =
0.26 T) split equal tunes

HIGH FLUX
ISOTOPE
REACTOR

SPALLATION
NEUTRON
SOURCE

OAK RIDGE
12 National Laboratory




Nuclear Inst. and Methods in Physics Research, A 1041 (2022) 167376

Contents lists available at ScienceDirect

RTBT Diagnostics

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

Four RTBT wire scanners allow measurement of 4D emittance
(requires slight mod of RTBT optics to avoid poorly conditioned maitrix*) foudmensional emittance measurement at the Spallation Neutron Source %

A. Hoover ", N.J. Evans
Oak Ridge National Laboratory, Ome Bethed Volley Rood, Oak Ridge, TN, 37831, USA
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Measured phase space parameters at the foll
° ° ° averaje SIpma
Procedure for Eigenpainting
o W mim) D45 326 DE34r21
. . W& (mraid) 1 567=0] 0053 160
1. Setup ring with equal tunes (~6.177) ST
-f-*iif;;i-»;f::f::;"::fi:z;‘h
e,

2. Inject single pulse off closed orbit /;;;:;i"l;f N
3. TBT BPM data to + linear model to Wy /f\\ \ﬁﬁ
Al £ S A . [ ;.:%

establish injection parameters (x,x',y.y’) aiare

4. Find kicker settings to inject on closed et g PR
orbit these are t, kicker settings LR 1] J [

: - - THCETRT
5. Energize solenoids to split funes 1 iR
6. Fit coupled tunes N A (AVLEL

7. Inject on eigenvector coordinates*: x ! \// ,f}
i B X . !
1. Av= A%V, v, v, v,,) these are t=t o, kickers %&k // I,_ﬂ,f;

8. Draw waveforms — v*A*Sart(f5/1ax) S
9. Paint

W (M

T T T T T
=20 =20 =10 4] 10 20 0
 fmim)

Turn-by-turn BPM data for a single pulse
Online model doesn’'t have solenoids — we can turn them off for injected with final kicker setfings
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Modes with Solenoids
« Equal tunes v, = v, = 6.1754

Modes at Injection Location

s « Solenoids on at full power for funes
@ ~ of nul=6.1584, nu2=6.1956
S = -z o Tune split 0.0372
e TUNES cqlibro’red to measured TBT
) 7 data using two free parameters:
S @’3 )¢< — solenoid strength

-3.00

— equal fune value used to match
observed tunes
0.25

O Q — + We will inject on dashed blue line

>, -
-0.25

-3.00 0.00 3.00 -0.25 0.00 0.25 -3.00 0.00 3.00

y'(mrad)

x(mm) x'(mrad) y(mm)
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TBT data fit with calibrated model

Xx(mm)

y(mm)

o 20 4 6 8 100 o
turn
Parameter Arbitrary Inj.  Single Mode
Ay(Nmm -mrad)  322+0.010 419+ 0012 Single turn injection off-axis
ety Performance here defines
0, 0.432:0.001 0320  0.004 / upper limit on painting
o= (ﬁ—]2 7.710.14 80.37+4.00
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Measurement without Solenoids

e Data
Gaussian Fit
— Elliptical Fit

RTBT_Diag:WS20
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Figure 5.20: Measured wire-scanner profiles for the final distribution in Experiment 3.
OAK RIDGE s | sncn Nice emiftance ratio, but profile not very ellipfical.
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Simulation vs. Measurement — No Solenoids Experiment

X- X-X' X- X
154 Simulation o i § " -’
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Simulated Phase Space

Extract beam after N turns are accumulated and measure evolution of emittance.
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Simulation with Solenoids
X-y X-X' y-y' x-y' y-x' x'-y'
! o o ® oL
a ' £1E
51 c= 2222 L 06
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C _ :
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_8 = 0 50 100 150 200 250 300
O Injected Turns
o .
2 y This is a representative “best case” —
have not finished with simulation of
_ recent resulfs.
v ~

Simulated Phase Space
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Wirescans with Solenoids With Solenoids

Without Solenoids
Horizontal Vertical Diagonal
o o .
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Red profiles are most elliptical.
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Summary Outlook

« We can ‘eigenpaint’ in the SNS ring
e Clear difference between case with/without solenoids

« We are interested in exploring behavior of eigenpainted
Danilov (or other) distributions over longer storage times, ideas
for space charge mitigation both in simulation and experiment
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