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Drowned in a swamp of terms...?
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Space-charge halo mechanisms

There are two families of space-charge mechanisms and yet they
need to be differentiated:
(particle) resonances and parametric instabilities.

- Particle resonances: a.k.a. single particle resonances, incoherent
resonances ...

- Parametric instabilities: a.k.a. parametric resonances, mode
instabilities, structure resonances, coherent resonances, coherent
instabilities ...

They are totally different mechanisms.
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Instabilities or Parametric Instabi |

1959, Kapchinskij and Vladimirskij found a self-consist =,‘lr

intensity beam distribution (called “KV distribution”) anc

ion' x" _& _KG) _
envelope equation: x + k(s)x = 0. >

x3 X
1979, Haber et al. found an instability of KV distributior — 7

1983, Hofmann derived various instabilities of KV distributions from
Vlasov-Poisson equations.

- called “instabilities” in the paper (instabilities of beam eigenmodes)
- showed that phase advance above 90° should be avoided
The 2" order instability is widely known as “the envelope instability”.

In the early days, they were called “instabilities”. But recently they are
called “parametric resonances” - causing confusion.

.......................................................................................................

fAre they resonances of the beam particle?
'No. They are “resonances” of beam modes.

......................................................................................................................................



Parametric instabilities in actual linacs?

Parametric instabilities have been observed for KV and waterbag
distribution in multiparticle PIC simulations.

But, not observed for Gaussian distribution.

multiparticle PIC simulation

Parametric KV waterbag Gaussian
instability distribution distribution distribution
2nd order O O O

3 order, 4" order O O X
higher order O X X

The 3™ or 4t order instabilities can be ignored in actual linacs, unless

waterbag or KV distribution is generated.

Jeon, J. Korean Phys. Soc. 72, 1523 (2018);

Space Charge 2019
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Particle Resonances
in high-intensity linacs

The 46 = 360° resonance in high-intensity linacs was discovered.
[Jeon et al, PRST-AB 12, 054204 (2009)]

The 66 = 720° resonance was discovered.
[Jeon et al, PRL 114, 184802 (2015)]

The 66 = 360° resonance is too weak to observe for Gaussian beam.
[Jeon et al, PRL 114, 184802 (2015)]

Weak sign is observed for waterbag beam.
[Hofmann et al, PRL 115, 204802 (2015)]

Higher order resonances were discovered:
8o = 1080° resonance, 10c = 1440° resonance [Hofmann, HB2016]



What is the difference?

4 ™ 4
Particle Resonances
: O resonance frequency
or incoherent resonances E>
component
- y, .

Particle resonances - resonance islands in phase space

s : — \ s

Parametric Instabilities

or parametric resonances o X resonance frequency
or coherent resonances ) L component

Parametric instabilities = no resonance islands in phase space
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There are look-alike people

* There are look-alike people
but not related at all.

* They have different parents.
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Appearance can be deceiving
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Resonance frequency component is observed for the 4t order resonance.
No resonance frequency component is observed for the 4t order parametric

instability.

For non-KV distribution, the 4t order particle resonance dominates.
The 4t order particle resonance has been verified in two experiments.
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Particle resonances dominate

for non-KV distribution
4th order 3rd order

_ c . 'C 4t order 6" order 8", 10" order
instability  instability resonance resonance resonance
waterbag  waterbag non-KV non-KV non-KV
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4t order 4th order 2" order
instability instability  instability
KV KV any dist.

 Particle resonances dominate over parametric instabilities in resonance
stopbands for non-KV distribution.

« Envelope instability develops only when 4t order resonance fades away

(as o increases and reaches 90° in a constant-c lattice) for non-KV
distribution.

» Envelope instability is suppressed in constant-c lattices.

« Only for waterbag distribution, the 3@ and 4t order parametric instabilities
o

1"‘ are observed away from particle resonances. 10



Envelope instability develops
when particle resonance fades away

. . : 10— Jeon et al, NIM A 832, 43 (2016)
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« 4t order resonance develops first for well-matched non-KV distribution.

« Envelope instability emerges because 4" order resonance fades away
(as o increases and reaches 90°).

« Halo particles in the resonance islands act as a mismatch, triggering the
envelope instability.

T For fair comparison, the 4t order resonance should be maintained.
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4th order particle resonance dominates
over envelope instability

rms emittance [mm mrad]
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In a constant-c lattice, 4" order particle resonance is maintained and
dominates over the envelope instability all the way.

Envelope instability is suppressed.
Resonance islands represent potential wells.
4t order particle resonance is the limiting mechanism in o, > 90°.
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4th order particle resonance dominates
over envelope instability

Gaussian distribution

-
N

In constant-c lattices,
I | O envelope instability is
sl _ N not observed.
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« Only the 4" order resonance is manifested in constant-c lattices.
« 4% order resonance dominates over envelope instability.
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4th order particle resonance dominates
for non-KV distribution
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The 4™ order particle resonance forms resonance
islands (potential wells) in the phase space.
Potential wells hold particles and suppress
parametric instabilities.

In constant-c lattices, 4t order resonance
dominates over the envelope instability.
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For non-KV distribution, 4" order resonance
dominates over the 4" order parametric instability.
The 4 order parametric instability does not have
resonance islands, and constant-c lattice does not
suppress the envelope instability.
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4 order instability and envelope
Instability
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4th order particle resonance dominates
over 4" order parametric instability

« 4t order particle resonance:

- dominates for non-KV distribution,
- verified by two experiments.
- the stopband is (90° < 6, & 6 < 90°),

« 4t order parametric instabilities:

4(c, — Aoy con) = 360° instability only for KV distribution,
dominates for KV distribution,
overlapping with the 4t order resonance

4(c, — Aoy on) = 180° instability for waterbag and KV distribution,
manifested away from particle resonances (at c ~ 35°),

No overlapping particle resonance exists.
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Operating in 6, > 90°

operating linacs in ¢ > 90°

4th order 6th order
resonance resonance
[ ‘ \ ——
| | |
| | |
6,=90° 6=90° 6=120°

* o, > 90° region has been avoided due to the envelope instability.

« No 4t order resonance effect in ¢ > 90° (Hamlltonlan property)
* No envelope instability in ¢ > 90°. «— 0\
« 6" order resonance is weak. o0°

« Operation in ¢ > 90° seems feasible.
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] — Hofmann et al, PRAB 20, 014202 (2017) r



Operating in 6, > 90°

operating linacs in ¢ > 90°
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Operating in 6, > 90°

beam spinning

Beam spinning can mitigate the 4t order resonance & envelope instability.

(@) <Pyg>=0 (b) < P, >=0.0075
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As angular momentum <P,>
increases, resonance island
structures get blurred (through
coupling).

...............

Cheon et al, NIM A 1013, 165647 (2021)
Cheon el al, PRAB 25, 064002 (2022)
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Operating in 6, > 90°

Relative emittance growth (Transverse)
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Beam spinning mitigates the
4% order resonance and
envelope instability.

4™ order resonance only.

4t order resonance +
envelope instability.
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Mitigation of envelope instability

Operating linacs in o > 90° avoids the 4" order resonance and the
envelope instability.
Adopting constant-c lattice (when ¢ < 90°) suppresses the envelope
instability (for non-KV distribution).

Beam spinning mitigates the 4" order resonance and the envelope
Cheon et al, NIM A 1013, 165647 (2021); PRAB 25, 064002 (2022)

instability.

Jeon et al, NIM A 832, 43 (2016)

Fast acceleration mitigates the envelope instability.
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By fast acceleration, beam passes
through the instability stopband fast
-> Envelope instability is mitigated.
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Conclusion

Particle resonances dominate over parametric instabilities in their
stopbands.

Parametric instabilities can be disregarded in actual linacs except for the
envelope instability, unless waterbag or KV distribution is generated.

Even the envelope instability can be disregarded when constant-c lattices
are used (4" order particle resonance is maintained).

Operating linacs in o > 90° can avoid the 4" order particle resonance and
the envelope instability completely.

The envelope instability can be suppressed or mitigated by:
- operating a linac in ¢ > 90°;

- operating a constant-c linac in o < 90°;

- beam spinning;

- fast acceleration.



Terminology Suggestion

Parametric instabilities of beam eigenmodes:

- a.k.a. parametric resonances, instabilities, coherent resonances,
structure resonances...

- better be called parametric instabilities to distinguish them from
“particle” parametric resonances.

- 2"d order instability is called the envelope instability rather than the
envelope resonance.

Particle resonances are resonances of the beam particle, as widely
known in circular accelerators:

- a.k.a. resonances or incoherent resonances.



Thank you for your attention!
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