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Collimation insertions in LHC
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Collimation insertions in LHC

▪ Momentum cleaning (IR3)
▪ Particles with large

momentum offsets
▪ Betatron cleaning (IR7)

▪ Particles with large
betatron amplitudes
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2023 LHC 
design

HL-LHC 
design

Bunch intensity 
[p+]

1.4-
1.6

1.15 2.3

Energy [GeV] 6800 7000 7000
Stored beam 
energy [MJ]

410 362 678

IR3 IR7
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Multi-stage Collimation

▪ Momentum cleaning 
(IR3)

▪ Betatron cleaning 
(IR7)
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Leakage of collimator losses

▪ Particles leak out of
collimator insertion

▪ Particles with large
momentum offsets 
(>~0.2 %) lost in 
Dispersion Suppressor

▪ Critical for cleaning
performance due to 
quench risk

▪ β* reduction requires tight 
collimator settings

▪ Min. collimator gap at top
energy ~1 mm
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HL-LHC challenges

▪ Protons per bunch increase: 
▪ 1.15e11 (design) → 1.4e11 (now) → 2.3e11 (HL)

▪ Impedance scales with bunch charge
▪ → beam lifetime decreases, instabilities
▪ Collimators main source of impedance

(low conductivity and tight gaps)
▪ Collimator leakage scales with beam intensity

(assuming same lifetime)
▪ → increased quench risk

▪ Limitations mainly from Betatron Collimation (IR7)
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Mitigations

Impedance
▪ Replace collimators with low-

impedance materials
▪ →Primary: Mo-graphite 

(instead of CFC)
▪ →Secondary: Mo-coated Mo-

graphite / Cu-coated graphite
▪ Concern still remains

Beam Losses
▪ Replace one arc dipole (8.33 T) 

with two shorter dipoles (11T)
▪ Install a collimator in the gap
▪ Descoped from baseline due to 

11T dipole production difficulties
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Mitigations

Impedance
▪ Replace collimators with low-

impedance materials
▪ →Primary: Mo-graphite 

(instead of CFC)
▪ →Secondary: Mo-coated Mo-

graphite / Cu-coated graphite
▪ Concern still remains

(e.g. crab cavity impedance)

Beam Losses
▪ Replace one arc dipole (8.33 T) 

with two shorter dipoles (11T)
▪ Install a collimator in the gap
▪ Descoped from baseline due to 

11T dipole production difficulties
▪ n.b. ion collimation is instead 

mitigated by crystal collimators 
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primary collimator

TCLD
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What else can we do?
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Change the optics in IR7 to mitigate both
impedance and collimation leakage!

Focus on LHC here, but approach can be 
generalized to other multi-stage systems
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Impedance

▪ Resistive wall impedance:

𝑍⊥
𝑑𝑖𝑝

𝜔 =
sgn 𝜔 + 𝑗 𝑍0𝐿𝛿0𝜇𝑟

2𝜋𝑎3
⋅

𝜔0

𝜔
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skin depth, 
depends on material conductivity

More details: L. Giacomel et. al., THBP40, this conference
    N. Mounet et. al., THA1C1, this conference

gap between jaws,
depends on beta function
(collimator settings are
defined in sigma)
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Impedance

▪ Resistive wall impedance:
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skin depth, 
depends on material conductivitygap between jaws,

depends on beta function
(collimator settings are
defined in sigma)

𝛽𝑥𝑍⊥
𝑑𝑖𝑝

𝜔 ∝
𝛽𝑥

𝛽𝑥
3 = 𝛽𝑥

−
1
2

𝛽𝑦𝑍⊥
𝑑𝑖𝑝

𝜔 ∝
𝛽𝑦

𝛽𝑥
3

Effective impedance, 
e.g. horizontal collimator:

Increasing beta functions opens 
up collimator gaps

More details: L. Giacomel et. al., THBP40, this conference
    N. Mounet et. al., THA1C1, this conference
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Collimator cuts (1/2)
▪ Particles are scattered from both jaws of primary collimator
▪ Betatron kick to hit secondary collimator: 

▪ (i) relative settings in units of beam size 𝜎
▪ (ii) phase advance

▪ Normalized kick Δx′[𝜎] ∝ 𝛽𝑥
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primary 
collimator

particle just hitting secondary collimator,
at different phase larger kick necessary



logo
area

Collimator cuts (2/2)
▪ Single-pass dispersion generated by dog-leg dipoles
▪ Shifts collimator cuts (pos or neg)

→ causes off-momentum particle to leak or be intercepted
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black: on-momentum
red: off-momentum

dog-leg
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Collimator cuts (2/2)
▪ Single-pass dispersion generated by dog-leg dipoles
▪ Shifts collimator cuts (pos or neg)

→ causes off-momentum particle to leak or be intercepted
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Increase beta functions at primary collimators and 
single pass dispersion at secondary collimators

black: on-momentum
red: off-momentum

dog-leg
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Optics rematch and constraints
▪ Used Xsuite* for matching
▪ Quadrupoles (individual and common for b1/b2) up to cells 13
▪ Constraints:

▪ Optics are matched to the arcs
▪ Peak beta function kept reasonably small (aperture, field errors)

▪ Goals:
▪ (1) Large betx/bety at primary collimators – cleaning impedance
▪ (2) Small betx at secondary collimators and absorbers – cleaning impedance
▪ (3) Increase single-pass dispersion – cleaning impedance
▪ (4) Small beta function in orthogonal plane of collimators – cleaning impedance

19*G. Iadarola, Xsuite: an integrated beam physics simulation framework, this conference
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(1)

*G. Iadarola, Xsuite: an integrated beam physics simulation framework, this conference
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(1) (2)

*G. Iadarola, Xsuite: an integrated beam physics simulation framework, this conference



logo
area

Optics rematch and constraints
▪ Used Xsuite* for matching
▪ Quadrupoles (individual and common for b1/b2) up to cells 13
▪ Constraints:

▪ Optics are matched to the arcs
▪ Peak beta function kept reasonably small (aperture, field errors)

▪ Goals:
▪ (1) Large betx/bety at primary collimators – cleaning impedance
▪ (2) Small betx at secondary collimators and absorbers – cleaning impedance
▪ (3) Increase single-pass dispersion – cleaning impedance
▪ (4) Small beta function in orthogonal plane of collimators – cleaning impedance

22

(1) (2)
(3)
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(1) (2)
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(4)

*G. Iadarola, Xsuite: an integrated beam physics simulation framework, this conference
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Experiment – optics
▪ Initial test in 2022, suffered from machine availability issues

▪ Commissioned the optics at top energy
▪ Aperture not compatible at injection energy
→ transition during ramp if deployed operationally

▪ Optics measurement showed small beta-beating in IR7 (< 7 %)
→ no corrections needed

24
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No issues observed with the optics

B1H

B1V

B2H

B2V
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Experiment – cleaning
▪ Collimator cleaning performance measured for beam 1 (vertical)
▪ Transverse damper excites single bunch → losses on primary collimator

26

simulated, reference measured, reference
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Experiment – cleaning
▪ Collimator cleaning performance measured for beam 1 (vertical)
▪ Transverse damper excites single bunch → losses on primary collimator
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Simulated loss reduction: 0.58 – 0.62 – 0.35
Measured loss reduction: 0.64 – 0.72 – 0.47 (±0.05) 
Follow-up measurements scheduled

Measurements support simulation results

simulated, reference

simulated, new optics

measured, reference

measured, new optics
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HL-LHC cleaning – simulated
▪ Improved optics further for HL-LHC
▪ Average losses in first cluster 

▪ Similar to nominal optics with TCLD

28

old baseline with 
HW upgrade
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HL-LHC impedance – simulated
▪ Main interest in the ~1 GHz frequency range

▪ 45 % improvement in x
▪ 10 % improvement in y

▪ Octupole threshold reduced by ~52 A
▪ Further reduction in y elsewhere is under study
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horizontal vertical
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Summary

▪ Two critical challenges in HL-LHC
▪ Leakage of losses from collimators
▪ Impedance of the collimators

▪ New optics design to mitigate both
▪ DS losses reduced by up to 70 %
▪ Impedance reduced by 45 % in H, 10 % in V
▪ Octupole threshold reduced by ~52 A

▪ Measurements:
▪ DS losses measured in one case – confirm simulation results
▪ Impedance measurements are scheduled

▪ New optics will be implemented in HL-LHC baseline 
(as of HLLHCV1.6 optics)

▪ Operational deployment before end of 
current Run 3 under consideration
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