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Loss of Landau damping
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Loss of Landau damping (LLD)
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H. Timko et al, Beam instabilities after injection to the LHC, 2018  

Loss of
Landau damping

Dominant inductive impedance 
above transition 

Undamped mode

*Y. H. Chin, K. Satoh, and K. Yokoya, Instability of a bunched beam with synchrotron frequency spread, 1983, 
and A. Burov, Van Kampen modes for bunch longitudinal motion, 2010

Long-lasting oscillations were observed 
in SPS, RHIC, Tevatron, LHC, …

Longitudinal particle oscillations can 
be described as van Kampen modes*
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Lebedev equation*
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A system of equations for line-density harmonics �̃�𝜆𝑘𝑘 for coherent mode Ω

→ The mode Ω is a solution if the determinant is zero, detℳ = 0

𝑘𝑘 = 𝜔𝜔/𝜔𝜔0
𝑁𝑁𝑝𝑝 – number of particles 
𝑞𝑞 – charge
𝜔𝜔0 – revolution frequency
𝜔𝜔rf – rf frequency
𝑉𝑉0 – rf voltage

Beam and RF parameters

Beam transfer matrix

Impedance at 𝑘𝑘𝜔𝜔0 + Ω

*A. N. Lebedev, Coherent synchrotron oscillations in the presence of a space charge, 1968



Approximate analytic solution
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det exp𝐴𝐴 = exp tr𝐴𝐴

The LLD threshold for dipole mode:

Assuming:
• Reactive impedance 𝑍𝑍𝑘𝑘/𝑘𝑘 = 𝑖𝑖Im𝑍𝑍/𝑘𝑘 = const.

• Beam above transition in single rf: Ω = 𝜔𝜔𝑠𝑠 0

• Short bunch approximation 𝜙𝜙m = 𝜔𝜔rf 𝜏𝜏/2 ≪ 𝜋𝜋

• Binomial distribution 𝜆𝜆 𝜙𝜙 ∝ 1 − 𝜙𝜙2/𝜙𝜙m2 𝜇𝜇+1/2

detℳ = det 𝐼𝐼 + 𝜀𝜀𝜀𝜀 𝜀𝜀 = det exp ln 𝐼𝐼 + 𝜀𝜀𝜀𝜀 𝜀𝜀 = exp tr ln 𝐼𝐼 + 𝜀𝜀𝜀𝜀 𝜀𝜀

= 1 + 𝜀𝜀 tr 𝜀𝜀 0 + 𝒪𝒪 𝜀𝜀2
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→ LLD threshold is zero for commonly used inductive impedance Im𝑍𝑍/𝑘𝑘 = const 
→ Elements 𝐺𝐺𝑘𝑘𝑘𝑘 saturate for 𝑘𝑘 → ∞

sum

sum



LLD threshold
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One needs to introduce a cutoff frequency 
𝑓𝑓𝑐𝑐 = 𝑘𝑘c𝑓𝑓0 and then

𝑁𝑁LLD ≈
𝜋𝜋

32𝑞𝑞𝑞𝜔𝜔rf𝜇𝜇 𝜇𝜇 + 1
𝑉𝑉0𝜙𝜙m5

𝜒𝜒𝜇𝜇 𝑘𝑘c𝜙𝜙m/𝑞 Im𝑍𝑍/𝑘𝑘

→ 𝑁𝑁LLD based on Sacherer* and Hofmann-
Pedersen** formalisms (𝜇𝜇 = 0.5) is reproduced 
for 𝑓𝑓𝑐𝑐 ≈ 1/𝜏𝜏 (𝑘𝑘𝑐𝑐𝜙𝜙m ≈ 𝜋𝜋)
*F.J. Sacherer, Methods for computing bunched-beam instabilities, 1972 

**A. Hofmann and F. Pedersen, Bunches with local elliptic energy distributions, 1979

For 𝑓𝑓𝑐𝑐 → ∞ 𝑁𝑁LLD ≈
1

64𝑞𝑞𝑞𝜇𝜇 𝜇𝜇 + 1
𝑉𝑉0𝜙𝜙m4

𝑓𝑓cIm𝑍𝑍/𝑘𝑘

so that 𝑁𝑁LLD ∝ 1/𝑓𝑓𝑐𝑐 and 𝜙𝜙m5 → 𝜙𝜙m4

Function 𝜒𝜒𝜇𝜇 𝑦𝑦 = 𝑦𝑦 1 − 2𝐹𝐹3
1
2

,
1
2

;
3
2

, 2, 𝜇𝜇;−𝑦𝑦2



LLD threshold: numerical approaches
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*K. Oide and K. Yokoya, Longitudinal single bunch instability in electron storage rings, 1990
**A. Burov, Van Kampen modes for bunch longitudinal motion, 2010
***IK, Matrix Equations for LOngitudinal beam DYnamics

(1) The Oide-Yokoya discretization method (O-Y)*: Originally applied for analysis of single-bunch 
instabilities and later for LLD studies**

(2) Direct solution of the Lebedev equation (L): recently implemented in code MELODY***

Example for LHC:
450 GeV, 𝜇𝜇 = 2, 

truncated inductive 
impedance with 

Im𝑍𝑍/𝑘𝑘 = 0.07 Ohm



LLD for effective impedance
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𝑁𝑁LLD ≈
𝑉𝑉0
𝑞𝑞𝜔𝜔rf
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Since

naturally Im𝑍𝑍/𝑘𝑘 eff =
∑𝑘𝑘=1
𝑘𝑘eff 𝐺𝐺𝑘𝑘𝑘𝑘Im(𝑍𝑍𝑘𝑘/𝑘𝑘)

∑𝑘𝑘=1
𝑘𝑘eff 𝐺𝐺𝑘𝑘𝑘𝑘

where 𝑘𝑘eff maximizes the nominator*

Broadband resonator with 𝑄𝑄 = 1, 𝑓𝑓𝑟𝑟 = 10𝑓𝑓rf
*S. Nese, Effective impedance for the threshold of loss of Landau damping, 2021

LHC, 450 GeV, 𝜇𝜇 = 2, broadband impedance
with 𝑅𝑅 = 0.07𝑓𝑓𝑟𝑟/𝑓𝑓0 Ohm and 𝑄𝑄 = 1

All work with 𝑘𝑘𝑐𝑐 → 𝑘𝑘eff & Im𝑍𝑍/𝑘𝑘 → Im𝑍𝑍/𝑘𝑘 eff

𝜇𝜇 = 2,𝜙𝜙m = 1



Beam measurements of LLD
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Measured parameters of bunches with LLD
in LHC at 6.5 TeV with 𝑉𝑉0 = 10 MV*

*E. Shaposhnikova et al, Loss of Landau damping in the LHC, 2011
J.F. Esteban Müller, Longitudinal intensity effects in the CERN Large Hadron Collider, PhD, 2016

→ Calculations are consistent with observations for 𝑓𝑓𝑟𝑟 ≈ 5 GHz (cutoff of LHC beam pipe) 
𝜏𝜏FWHM 2/ ln 2

LLD was the first and only intensity effect observed in the LHC in the longitudinal plane*

LLD threshold for LHC at 6.5 TeV with 
𝑉𝑉0 = 10 MV, 𝜇𝜇 = 2, Im𝑍𝑍/𝑘𝑘 = 0.076 Ohm



Single-bunch instabilities
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Instability of proton bunch in SPS
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The simulation results (with code BLonD**) for the complicated impedance model were consistent 
with the measured instability threshold*, however, the instability mechanism was not known

*A. Lasheen, Beam measurements of the longitudinal impedance of the CERN Super Proton Synchrotron, PhD, 2017
J. Repond, Possible mitigations of longitudinal intensity limitations for HL-LHC beam in the CERN SPS, PhD, 2019

**H. Timko et al, Beam Longitudinal Dynamics Simulation Suite BLonD, 2022
***CERN SPS Longitudinal Impedance Model, https:// gitlab.cern.ch/longitudinal-impedance/SPS

SPS impedance model (2018)***Bunch parameters after acceleration 
from 26 to 450 GeV*

Uncontrolled emittance blowup during the acceleration of single bunches was observed



Stability maps during acceleration
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The island found in simulations at 450 GeV* is also present earlier in the acceleration cycle**
→ Measured parameters of unstable bunches (✚) are crossing the island

**M.Gadioux, Evaluation of longitudinal single-bunch stability in the SPS and bunch optimization for AWAKE, 2020

Calculations at flattop Calculations during ramp (✚ - measurements)



Unstable island
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→ Radial mode-coupling instability** since there is no overlap of modes from different 
azimuthal bands
→ Coupling is present in many azimuthal modes simultaneously (microwave regime)

van Kampen modes

*K. Oide and K. Yokoya, Longitudinal single bunch instability in electron storage rings, 1990

Calculations at flattop



Role of rf nonlinearity
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van Kampen mode for linear rf without 
potential-well distortion (PWD)

*F. J. Sacherer, Bunch lengthening and microwave instability, 1977 

If PWD and rf nonlinearity are neglected, the instability threshold is 5 times higher (azimuthal mode-
coupling instability*) than for radial mode-coupling instability 

In a self-consistent approach, a strong radial mode-coupling instability emerges at this intensity
→ rf nonlinearity can significantly reduce the threshold

van Kampen modes



Multi-bunch instabilities
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Instability due to narrowband impedance
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Coupled-bunch mode 𝑙𝑙 of 𝑀𝑀 equidistant bunches can be 
driven by impedance with 𝑘𝑘nb = 𝑓𝑓𝑟𝑟,nb/𝑓𝑓0 = 𝑝𝑝𝑀𝑀 + 𝑙𝑙

The threshold can be obtained from the Lebedev 
equation. If the resonator bandwidth Δ𝜔𝜔 ≪ 𝑀𝑀𝜔𝜔0 and 𝑘𝑘nb
is far from 𝑀𝑀/2 harmonics*

The coupled-bunch instability (CBI) threshold for the 
binomial distribution is the lowest for 𝑚𝑚 = 1**

Resonator impedance with 𝑄𝑄 = 100

Δ𝜔𝜔

*V. I. Balbekov and S. V. Ivanov, Longitudinal beam instability threshold beam in proton synchrotrons, 1986
**IK and E. Shaposhnikova, “Longitudinal coupled-bunch instability evaluation for FCC-hh, 2019

𝑁𝑁CBI ≈
𝑉𝑉0𝜙𝜙m4 𝑘𝑘nb

16𝑞𝑞𝜔𝜔rf𝑀𝑀𝑅𝑅nb
min
𝑦𝑦∈ 0,1

1 − 𝑦𝑦2 1−𝜇𝜇

𝜇𝜇 𝜇𝜇 + 1
𝐽𝐽1−2

𝑦𝑦𝑘𝑘nb𝜙𝜙m
𝑞

Bessel function

Example of unstable dipole mode

→ Unstable mode ΩCBI is inside the incoherent frequency band



Generalized threshold
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Typically, broadband (bb) and narrowband (nb) impedance 
sources are treated separately, except in a few examples
of CBI growth rate calculations*

Including them in the Lebedev equation simultaneously

*M. Blaskiewicz, Longitudinal stability calculations, 2009, and recently in 
A. Burov, Longitudinal modes of bunched beams with weak space charge, 2021

𝑁𝑁𝑔𝑔(Ω𝑔𝑔) ≈
𝑉𝑉0
𝑞𝑞𝜔𝜔rf
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𝑁𝑁LLD
+

1
𝑁𝑁CBI

Ω𝑔𝑔 ≠ ΩLLD and Ω𝑔𝑔 ≠ ΩCBI
→ Approximate threshold (first estimate) 

Growth rates of most unstable 
modes for 9 bunches 

(MELODY - lines, BLonD - crosses)

1
0.34

=
1

0.52
+

1
1

→ Instability develops below the LLD threshold



Multi-bunch instabilities in the SPS
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Instability of fixed-target beams (5 ns spacing) is 
driven by Higher Order Mode (HOM) of 200 MHz rf 
system at 914 MHz*

*E. Shaposhnikova, Analysis of coupled bunch instability spectra, 1999
**LHC Injectors Upgrade, Technical Design Report, Vol. I: Protons, 2014 

→ LLD has no impact since 𝑁𝑁CBI is very low

Growth rates of most unstable modes for full ring 
(5 ns bunch spacing)

→ Instability of bunch trains is enhanced by LLD 
(weak dependence on number of bunches)
→ Stability is improved with an additional 800 
MHz rf system and controlled emittance blowup 
(LLD threshold is increased)**

Growth rates of most unstable modes for LHC-
type trains (25 ns bunch spacing)

𝑁𝑁LLD

𝑁𝑁CBI

BLonD - crosses

𝑁𝑁LLD

𝑁𝑁CBI



Expectations for HL-LHC
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Coupled-bunch instabilities (CBI) driven by 
higher-order modes (HOM) have not been 
observed in the LHC so far

Bunch intensity for HL-LHC is doubled 
compared to LHC, and crab cavities with 
strongly damped HOMs will be installed 

→ In the presence of BB impedance, the 
instability threshold is reduced below the 
LLD threshold
→ Precise BB impedance model (𝑓𝑓𝑐𝑐) is 
necessary to predict stability margins

Instability thresholds at 𝐸𝐸 = 450 GeV for 𝑉𝑉0 = 8 MV: 
nb - 𝑅𝑅nb = 4 × 71 kOhm, 𝑓𝑓𝑟𝑟 = 582 MHz
bb - Im𝑍𝑍/𝑘𝑘 eff ≈ 0.075 Ohm, 𝑓𝑓𝑟𝑟 = 5 GHz



Summary
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Threshold for loss of Landau Damping (LLD) for binomial distribution:
- is inversely proportional to cutoff frequency (vanishes for Im𝑍𝑍/𝑘𝑘 = const)
- has weaker dependence on the bunch length (4th instead of 5th power)
- can be evaluated for arbitrary impedance using effective-impedance parameters

Single bunch instability threshold: 
- is mainly determined by the radial mode-coupling mechanism
- can be reduced by rf nonlinearity 

Multi-bunch instability threshold: 
- is defined by both broadband and narrowband impedance contributions
- can be below the LLD threshold

These findings are supported by numerical calculations and beam measurements
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Thank you for your attention!
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