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Direct and Inverse Problems

Inverse

How a simplest unified description

for gravity and inertia
could look like?
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1879-1955 1888-1925

What could be a fate of the Universe,

according to GR? .\
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5 [/ Friedmann
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Harmonic oscillc ith an antidamper

ar + tAwgar = —1iga



Harmonic oscillators with antidamper

ar x exp(—ivt)



Harmonic oscillators with antidamper

ar x exp(—ivt)

ar = J

I/—Awk
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alien nonlinearity

Aw(Jy, Jy) = kJ,
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alien nonlinearity

Aw(Jy, Jy) = kJ,

own nonlinearity

Aw(Jg, J,) = kJy

Hereward rule
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1D, octupoles, Gaussian

alien nonlinearity =1

Aw(Jy, Jy) = kJ,

own nonlinearity

Aw(Jz, Jy) = kJy

Hereward rule




Direct and Inverse Stability Problems

Vaccaro stability diagrams

e alien

Direct problem: F(J) - V(g')

Inverse problem: V(g") — F())
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Direct and Inverse Stability Problems

Vaccaro stability diagrams

e alien

- Oown

Direct problem: F(J) - V(g")
Inverse problem: VV(g") — F(J) ; a pair of nonlinear integral equations.

PHYSICAL REVIEW LETTERS 126, 164801 (2021)

Proof-of-Principle Direct Measurement of Landau Damping Strength
at the Large Hadron Collider with an Antidamper

S. A. Antipov ,1’2’* D. Amorim ,1’3 N. Biancacci,1 X. Buffat,1 E. Métral ,1
N. Mounet,1 A. Oeftiger ,1’4 and D. Valuch®'




Rg ~ v; Sg ~ T F,(v)
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A= A§R9FWHM / max gg aspect ratio for V'
] n
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FIG. 2. Aspect ratio A of 1D stability diagram, the alien
case, versus the power n of the binomial distribution function
o« (1 —=J/Jo)", ndo > 0. Note that limn,_2A = oo. The FIG. 3. The same as Fig. [2| for the own case. Here

dashed line marks the asymptote, F(J) = J; 'e=7/70, Jo > 0. lim,_,_2 A = oo as well.







Convergency Limitation
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FIG. 4. An example of the iteration convergence for the
alien case, Vmin = 0.7. Here "true” means the distribution
responsible for the ”measured diagram”; ”(0” means the initial
guess of the distribution, while ”1” and ”2” stand for the
output distributions after the first and second four-leg moves
of the algorithm. The latter is clearly very fast, but it becomes
unstable at small actions, J < 0.5, for a slightly smaller border

Vmin-




PADNGELEN Aw(Jy, Jy) = kydy — kylJy
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FIG. 7. Vaccaro diagrams calculated for a Gaussian bunch at
the LHC top energy for 550A of the octupole current, yielding
ke =1.0-10"%, ky, = 0.7-10~* for the normalized rms emit-
tances 2.5mm-mrad; for more details see Ref. [5]. Gaussian
normalized rms emittances for each curve are shown.

Positive tune shifts mostly correspond to x, negative — to y.
The problem is effectively factorized, reducing to 1D case.
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If |g| <« ws then the gain is distributed between the headtail modes:

g— g =49K; (0 with ¢ = rms HT phase

AR e (e for the longitudinally Gaussian case

Kz=/ VH(GIMHEGIY in general
0

l=—o0c

If |g|>» ws |{lws, the single rigid-bunch mode is formed, taking the entire gain.
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