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 Dynamic Aperture (DA) is crucial for understanding non-linear beam dynamics in circular accelerators like the 
LHC, offering insights into beam stability and lifetime.

 Traditional DA calculation methods are computationally demanding, especially for large accelerators like the LHC.

 Our previous work has demonstrated that Deep Neural Networks (DNNs) can accurately predict the DA for new 
machine configurations (interpolation) while significantly accelerating computational processes.

INTRODUCTION

10.18429/JACoW-IPAC2023-WEPA097

MAD-X

XSuite

DA training

DA + error
Estimation

Lattices DA dataConfigurations

Synthetic
MODELNEW 

configurations ML variabbles

La
tti

ce
s

 In this study we integrated the DNN model into an innovative Active Learning (AL) 
framework. For this purpose, we introduced an error estimator alongside the DA 
regressor, allowing uncertainty estimation. 

 AL framework also enables smart sampling of simulations: by prioritising predictions with 
higher errors, it efficiently determines the sequence in which to simulate new machine 
configurations.
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DATASET 2

 The dataset is based on simulation (MADX) and tracking (xsuite) on LHC 
2023 injection optics.

 Tracked the particles distributed in polar coordinates (44 angles and 
0.06 𝜎𝜎 radial steps) for every machine configuration. 

 Goal is to regress the evolution of the stable region (angular DA) in 12 
different number of turns (up to 105 turns) [Red points in the image].

 10k sets of accelerator parameters generated using: 
 Normal random sampling 60 different seeds (magnet error 

realizations) for the 2 beams
 Chromaticity (dQ) in interval of [0,30] in steps of 2 DQ
 Octupole magnet current (I_MO) in interval of [-40,40] in steps of 5 A
 Tune scan: 𝑄𝑄𝑥𝑥 [62.100,62.500] and 𝑄𝑄𝑦𝑦 [60.100,60.500] in steps of 

0.05

 Additional machine variables added into the dataset (total of 19 machine variables):  7 anharmonicities up to second 
order (PTC), maximum values of 𝛼𝛼 and 𝛽𝛽 and phase-advance 𝜇𝜇 (x,y) at IP5.
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 Considering fully connected DNN for machine parameters 
with concatenate layer (bias) to gather Beam and Seed 
labels.

 Mean Absolute Error (MAE) used as Loss function.
 Inference of a single machine (12 different turns x 44 

angles) in 0.5 ms (~1 𝜇𝜇s/angular DA prediction)

DNN ARCHITECTURE, TRAINING AND PERFORMANCE

 Test MAE = 0.201 beam 𝜎𝜎 and MAPE = 11.91 %.
 Improved performance due to the increase of variables 

(previous model MAE= 0.64 beam 𝜎𝜎)
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ERROR ESTIMATION: MONTE CARLO DROPOUT 4

 Usually, dropout is a regularization technique to avoid overfitting during training 
(which randomly sets a fraction of nodes to zero). 

 By leveraging dropout at inference time, we introduce diversity among the predictions 
(different angular DAs every time). This technique is known as Monte Carlo (MC) 
dropout.

 The variation in these predictions are utilized to estimate uncertainty: dropout at 1% 
between the first hidden layers and 1 std of 128 variations as error.

 DA and error prediction (129 inferences) in 0.75 s/machine configuration.
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5ACTIVE LEARNING FRAMEWORK

For more details, 
let’s meet at the poster session!

THANK YOU!!

 Tracking on Xsuite takes 107s/machine configurations 
(using HT-Condor), while the AL framework, once 
trained, is approximately 140 times faster!

 AL demonstrated as a powerful tool for accelerating 
beam dynamics studies while maintaining precision.
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