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INTRODUCTION

Dynamic Aperture (DA) is crucial for understanding non-linear beam dynamics in circular accelerators like the
LHC, offering insights into beam stability and lifetime.

Traditional DA calculation methods are computationally demanding, especially for large accelerators like the LHC.

Our previous work has demonstrated that Deep Neural Networks (DNNs) can accurately predict the DA for new
machine configurations (interpolation) while significantly accelerating computational processes.

In this study we integrated the DNN model into an innovative Active Learning (AL)
framework. For this purpose, we introduced an error estimator alongside the DA

regressor, allowing uncertainty estimation.

AL framework also enables smart sampling of simulations: by prioritising predictions with
higher errors, it efficiently determines the sequence in which to simulate new machine

configurations.
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Abstract

“The Dynamic Aperture is an important concept for the
study of non-linear beam dynamics in a circular accelerator.
‘The DA is defined as the extent of the phase-space region in
which the particle’s motion remains bounded over a given
finite number of turms. Such a region s determined by the
imperections in the magnetic ficlds, beam-beam effects,
electron lens, electron clouds, and odher non-linear effects
“The study of the DA provides insight into the mechanisms
driving the beam lifetime, which i essentil for the oper-
ation of existing circular accelerators, such as the CERN
Large Hadron Collider, as well as for the design of future
ones. The standard approach to numerical evaluation of the
D relies on the ability to accurately track iniial conditions,
distributed in phase space, on the required time scale, and

DA calculation, we propose the use of a Machine Learning
technique for the angular DA regression based on simulated
HL-LHC data. We demanstrate the implementation of a
Deep Neural Netwari: mode] by measuring the time and as-
sessing the performance of the angular DA regressor,as well
a8 carrying out studics with varicus hardware architectures
including CPU, GPU, and TPU

INTRODUCTION

“The study of dynamic aperture (DA), defined asthe extent
of the connected phase-space region in which the single-
bounded,

the complex mapping between the initial conditions and the
angular DA idefined below) and provide a fast and accurate
prediction of the angular DA for new sets of initial condi-
tions and machine configurations. This approach has the
potential to reduce the computational cost of DA evaluation
and enable fasier sccelerator parameter optimisation.

Here, we proposc to use machine leaming technigues to
speed up angular DA evaluation based on simulated data
obiained using the High Luminosity LHC (HL-LHC) latice
[3]. We investigated the use of a Deep Neuwral Network
(DNN) model to regress the angular DA & a function of
the imitial conditions. We study the performance of this ML
‘model on various handware architcctures and compare it
with the standard simulation method.

SIMULATED SAMPLES

“Totrain the ML model, we simulated several accelerator
configurations using MAD-X [12] and the V1.0 HL-LHC
lattce in the injection configuration at 450 GeV [13]. We
varied six accelerator parameters, namely the betatron tunes
0,0, chromaticities 0.0, strength of the Landau. o¢-
tupoles (using the curreat, o, powering the octupoles)
and the realisations (sometimes also called seeds) of the
‘magnetic field errors assigned to the various magnet fam-
ilies. Furthermore, both Beam 1 and Beam 2 have been
considercd in these studics. For tis first study, we limited
e parameters sampling to two 0, 0, scans (8 ), velues
in [0.255,0.295] and 9 0, values in (0.280,0.325 ) and a

into the single-
particle, non-lincar beam dynamics and mechanisms driving
the time evalution of bearm losses [1], which is essential for
the design and operation of existing (2, 3] and future ireular
acceleratars [4],

‘The numerical calculation of the DA involves tracking &
arge number of inital conditions in phase space for many
wms 5, 6]. This method is computationally demanding,
especially for large accelerators such as the CERN Large
Hadron Collider (LHC) 2], and for this analytical scaling
Iaws have been studied for several years [6, 7). In general,
in the accelerator community, there is growing interest in
developing methods to accelerate the DA calculation while
maintaining its aceuracy.

In recent years, Machine Learaing (ML) techniques have
emerged as a promising approach to accelerate DA evalua-
tion (see, e.g. [$-11]). By training amodel on alarge data set
of simulated initial conditions, an ML algorithm can learn
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', gy scan (15 ( values in [0, 15] and 17 iy, values in
[-40, 40]A) for Beam | and Beam 2 and 60 possible real-
isations of the magnetic crrors. This resulied in 4 total of
29880 sets of accelerator parameters.

‘The phase space was probed by tracking with SixTrack
[14] for 10° turns a set of intial conditions sclected along 11
polar angles, evenly distributcd in |0, /2] and 290 radial
amplitudes, evenly distributed in (0.0, 20a |. An example
of the results of these computations in the x - y space is
shown in Fig. 1 for aspecific accelerator configuration, in
which the stability time, .. the time taken by the orbit to
reach an amplitude corresponding to a numerical overflow,
s provided for cach inital condition.

“The input for the surrogate model is given by the parame-
ters describing the accelerator configuration and the polar
angle, the regressor will lear for cach aceclerator configu-
ration the value of the last stable amplitude for that angle,
which we-call angular DA. When considering the angleas an
additional parameter, the number of samples is increased to
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DATASET

The dataset is based on simulation (MADX) and tracking (xsuite) on LHC
2023 injection optics.

Tracked the particles distributed in polar coordinates (44 angles and
0.06 o radial steps) for every machine configuration.

Goal is to regress the evolution of the stable region (angular DA) in 12
different number of turns (up to 10° turns) [Red points in the image].

10k sets of accelerator parameters generated using; E

Normal random sampling 60 different seeds (magnet error
realizations) for the 2 beams

Chromaticity (dQ) in interval of [0,30] in steps of 2 DQ
Octupole magnet current (I_MO) in interval of [-40,40] in steps of 5 A

Tune scan: ¢, [62.100,62.500] and @,, [60.100,60.500] in steps of
0.05

LHC 2023 injection (beam=2, seed=28):
20 OQX =62.31, Qy,=60.32, dQ =2.00, Imo = 30.00

» Angular DA @ 1000 turns
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Additional machine variables added into the dataset (total of 19 machine variables): 7 anharmonicities up to second
order (PTC), maximum values of « and [ and phase-advance u (x,y) at IP5.

turns



DNN ARCHITECTURE, TRAINING AND PERFORMANCE

Considering fully connected DNN for machine parameters

with concatenate layer (bias) to gather Beam and Seed
labels.
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Angular DA

Mean Absolute Error (MAE) used as Loss function.

Inference of a single machine (12 different turns x 44
angles) in 0.5 ms (~1 us/angular DA prediction)
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Test MAE = 0.201 beam ¢ and MAPE = 11.91 %.

Improved performance due to the increase of variables
(previous model MAE= 0.64 beam o)



ERROR ESTIMATION: MONTE CARLO DROPOUT

Usually, dropout is a regularization technique to avoid overfitting during training Machine

(which randomly sets a fraction of nodes to zero). Parameters
(19)

Beam & Seed

(2)

By leveraging dropout at inference time, we introduce diversity among the predictions
(different angular DAs every time). This technique is known as Monte Carlo (MC)
dropout.

Dense (2048)

The variation in these predictions are utilized to estimate uncertainty: dropout at 1%
between the first hidden layers and 1 std of 128 variations as error. DROPOUT

DA and error prediction (129 inferences) in 0.75 s/machine configuration.
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ACTIVE LEARNING FRAMEWORK L ’
LHC 2023 injection (beam=2, seed=48) at turn 1000:

Qx=62.35, Q,=60.43, Q"=14.00, Iyo =5.00

Tracking on Xsuite takes 107s/machine configurations > o

(usling H'.I'-Condor)., while the AL. framework', once Simulated Angular DA
trained, is approximately 140 times faster! 175 +  Predicted Angular DA
AL demonstrated as a powerful tool for accelerating +H++++
beam dynamics studies while maintaining precision. 1501 +:I—_|__|_+ .
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