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¢ Abstract

Landau damping plays a crucial role in ensuring single-bunch stability in hadron synchrotrons.

In the longitudinal plane, loss of Landau damping (LLD) occurs when a coherent mode of Normilzed synchrotron frequency distribution
oscillation moves out of the incoherent synchrotron frequency band. The LLD threshold is = Synchrotron frequency distribution a4 h Single R~ _
studied for a purely inductive impedance below transition energy, specifically considering the changes, f.(¢) changes with RF '  BSM. m—4 r—025
common case of double harmonic RF systems operating in counter-phase at the bunch configuration, e.g., voltage (r) and ‘ . U miMoacar—o3s
position. The additional focusing force due to beam-induced voltage distorts the potential well, harmonic number ratio (n) ‘

ultimately collapsing the bucket. The limiting conditions for a binomial particle distribution are between the RF systems.

calculated. Furthermore, the contribution focuses on the configuration of the higher-narmonic

RF system at four times the fundamental RF frequency operating in phase. In this case, the Enlarging the synchrotron

LLD threshold shows a non-monotonic behavior with a zero threshold where the derivative of frequency spread is a common 4 — o

the synchrotron frequency distribution is positive. The findings are obtained employing semi- technique to enhance beam S 4 Jdd > 0

analytical calculations using the MELODY code. stability
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* The beam induced voltage acts as a focusing force > The total potential well LLD in BLM for harmonic number ratio n=4

shrinks with the intensity ultimately collapsing the buckets.
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= For binomial particle distribution with u = 1/2, the exact solution for these .
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critical intensities Is derived:
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rf(Pmax) impedance cutoff frequency
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- Holds for any RF potential

* |n the case of u # 1/2, only empirically fitted functions are proposed for the
moment

= Excellent agreement with semi-analytical calculation (MELODY [3]) ¢ COnCIUSiOnS

Critical curve in BLM Critical curve in BSM The loss of Landau damping in synchrotrons is a critical condition that can lead to beam
MELODY: i = 0.5 MELODY: = 0.5 instabilities and particle loss. The present study focuses on the LLD threshold within the

| © MELODY: p =15 | © MELODY: =15 | _ _ S B
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N | Fauation G | N | Eauation G energy (or capacitive above) are involved. The limiting intensity for a binomial particle
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S L s G2d S asetiane S bt G267 e distribution was calculated analytically and compared with results from the semi-analytical
Y P Lo b g S code MELODY. In BSM, loss of dependency on the cutoff frequency in the LLD threshold
0 0 N agrees with the prediction showing a non-monotonic behavior. As expected, regions where
0 05 1 15 92 95 3 0 05 | 15 9 95 3 df,/d¢ > 0 led to a vanishing LLD threshold at any intensity. On the contrary, in BLM, the
¢ (rad) ¢ (rad) LLD threshold results in a monotonic function.
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